Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Encyclopaedia of Mathematics
Volume 6: Subject Index - Author Index
von Michiel Hazewinkel
Verlag: Springer Netherlands
Reihe: Encyclopaedia of Mathematical Sciences
Reihe: Encyclopaedia of Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 9789400903654
Auflage: 1995
Erschienen am 01.12.2013
Sprache: Englisch
Umfang: 732 Seiten

Preis: 523,23 €

523,23 €
merken
zum Hardcover 534,99 €
Inhaltsverzeichnis
Klappentext

A.- B.- C.- D.- E.- F.- G.- H.- I.- J.- K.- L.- M.- N.- O.- P.- Q.- R.- S.- T.- U.- V.- W.- X.- Y.- Z.



This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe­ matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi­ sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en­ gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.


andere Formate