Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Algebraic Theory of Locally Nilpotent Derivations
von Gene Freudenburg
Verlag: Springer Berlin Heidelberg
Reihe: Encyclopaedia of Mathematical Sciences Nr. 136
Gebundene Ausgabe
ISBN: 978-3-662-55348-0
Auflage: 2nd ed. 2017
Erschienen am 18.09.2017
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 25 mm [T]
Gewicht: 682 Gramm
Umfang: 344 Seiten

Preis: 160,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations.
The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves.
More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem.
A lot of new material is included in this expanded second edition, such as canonical factorization of quotient morphisms, and a more extended treatment of linear actions. The reader will also find a wealth of examples and open problems and an updated resource for future investigations.



Introduction.- 1 First Principles.- 2 Further Properties of LNDs.- 3 Polynomial Rings.- 4 Dimension Two.- 5 Dimension Three.- 6 Linear Actions of Unipotent Groups.- 7 Non-Finitely Generated Kernels.- 8 Algorithms.- 9 Makar-Limanov and Derksen Invariants.- 10 Slices, Embeddings and Cancellation.- 11 Epilogue.- References.- Index.


andere Formate
weitere Titel der Reihe