Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Complex-Valued Neural Networks with Multi-Valued Neurons
von Igor Aizenberg
Verlag: Springer Berlin Heidelberg
Reihe: Studies in Computational Intelligence Nr. 353
Hardcover
ISBN: 978-3-662-50631-8
Auflage: Softcover reprint of the original 1st ed. 2011
Erschienen am 23.08.2016
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 16 mm [T]
Gewicht: 429 Gramm
Umfang: 280 Seiten

Preis: 160,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 19. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

160,49 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.
This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.
These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.
 
The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.



Why We Need Complex-Valued Neural Networks?.- The Multi-Valued Neuron.- MVN Learning.- Multilayer Feedforward Neural Network based on Multi-Valued Neurons (MLMVN).- Multi-Valued Neuron with a Periodic Activation Function.- Applications of MVN and MLMVN.


weitere Titel der Reihe