Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Algebra II
Noncommutative Rings Identities
von I. R. Shafarevich, A. I. Kostrikin
Verlag: Springer Berlin Heidelberg
Reihe: Encyclopaedia of Mathematical Sciences Nr. 18
Hardcover
ISBN: 978-3-642-72901-0
Auflage: Softcover reprint of the original 1st ed. 1991
Erschienen am 23.11.2011
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 14 mm [T]
Gewicht: 382 Gramm
Umfang: 248 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

53,49 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge­ 1 bra ¿ Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat­ ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap­ plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al­ gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep­ resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with· polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.



I. Noncommutative Rings.- II. Identities.- Author Index.


weitere Titel der Reihe