Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Numerical Regularization for Atmospheric Inverse Problems
von Adrian Doicu, Franz Schreier, Thomas Trautmann
Verlag: Springer Berlin Heidelberg
Reihe: Environmental Sciences
Hardcover
ISBN: 978-3-642-42401-4
Auflage: 2010
Erschienen am 31.10.2014
Sprache: Englisch
Format: 240 mm [H] x 168 mm [B] x 24 mm [T]
Gewicht: 733 Gramm
Umfang: 440 Seiten

Preis: 213,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.



Chapter 1. Atmospheric remote sensing

Chapter 2. Ill-posedness of linear problems

Chapter 3. Tikhonov regularization for linear problems

Chapter 4. Statistical inversion theory

Chapter 5. Iterative regularization methods for linear problems

Chapter 6. Tikhonov regularization for nonlinear problems

Chapter 7. Iterative regularization methods for nonlinear problems

Chapter 8. Total least squares

Chapter 9. Two direct regularization methods

Appendix A. Analysis of continuous ill-posed problems

Appendix B. A general direct regularization method for linear problems

Appendix C. A general iterative regularization method for linear problems

Appendix D. A general direct regularization method for nonlinear problems

Appendix E. A general iterative regularization method for nonlinear problems


andere Formate
weitere Titel der Reihe