Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Numerical Regularization for Atmospheric Inverse Problems
von Adrian Doicu, Thomas Trautmann, Franz Schreier
Verlag: Springer Berlin Heidelberg
Reihe: Environmental Sciences
Reihe: Springer Praxis Books
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-05439-6
Auflage: 2010
Erschienen am 16.07.2010
Sprache: Englisch
Umfang: 426 Seiten

Preis: 213,99 €

Inhaltsverzeichnis
Klappentext

Chapter 1. Atmospheric remote sensing

Chapter 2. Ill-posedness of linear problems

Chapter 3. Tikhonov regularization for linear problems

Chapter 4. Statistical inversion theory

Chapter 5. Iterative regularization methods for linear problems

Chapter 6. Tikhonov regularization for nonlinear problems

Chapter 7. Iterative regularization methods for nonlinear problems

Chapter 8. Total least squares

Chapter 9. Two direct regularization methods

Appendix A. Analysis of continuous ill-posed problems

Appendix B. A general direct regularization method for linear problems

Appendix C. A general iterative regularization method for linear problems

Appendix D. A general direct regularization method for nonlinear problems

Appendix E. A general iterative regularization method for nonlinear problems



The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.


andere Formate
weitere Titel der Reihe