Bücher Wenner
Markus Braukmann liest aus "DIE ERSTE GENERATION"
09.10.2025 um 19:30 Uhr
Mathematische Logik mit Informatik-Anwendungen
von H. Noll, E. Bergmann
Verlag: Springer Berlin Heidelberg
Reihe: Heidelberger Taschenbücher Nr. 187
Hardcover
ISBN: 978-3-540-08202-6
Erschienen am 01.07.1977
Sprache: Deutsch
Format: 203 mm [H] x 133 mm [B] x 19 mm [T]
Gewicht: 392 Gramm
Umfang: 348 Seiten

Preis: 49,95 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 2. Juni.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

49,95 €
merken
zum E-Book (PDF) 36,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis

1. Vorbemerkungen.- § 1. Einleitung.- § 2. Verwendete Notation.- 2. Einführung und Motivation.- § 3. Programmiersprachen und elementare Konzepte der mathematischen Logik.- § 4. Umgangssprache und die Gestalt der Syntax einer mathematischen Logik.- § 5. Das weitere Vorgehen.- 3. Syntax und Semantik der Prädikatenlogik.- § 6. Syntax und Semantik.- § 7. Prädikatenlogische Wahrheit.- 4. Eigenschaften der Prädikatenlogik.- § 8. Aussagenlogik im Rahmen der Prädikatenlogik.- § 9. Gesetze über Quantoren und Substitution.- § 10. Logisches Schließen als "Rechnen": Folgern - Ableiten.- § 11. Der Vollständigkeitssatz.- § 12. Entscheidbarkeitsfragen.- 5. Logische Grundlagen des maschinellen Beweisens (Resolventenprinzip).- § 13. Einleitung.- § 14. Die Klauselform der Prädikatenlogik und Herbrand-Strukturen (eine Umformulierung der klassischen Logik).- § 15. Herbrand-Prozeduren.- § 16. Das Resolventenprinzip.- § 17. Beweisverfahren des Resolventenprinzips.- § 18. Der konstruktive Charakter von Resolventenableitungen (Greenscher Antworten-Extraktionsprozeß).- § 19. Prädikatenlogik als Programmiersprache.- 6. Die Methode der Formalisierung: zwei Beispiele.- § 20. Informationswiedergewinnung als Anwendungsbeispiel.- § 21. Exkurs: das Formalisieren.- § 22. Die Formalisierung der Wertzuweisung.- 7. Probleme mit der Logik.- § 23. Grenzen der mathematischen Logik.- § 24. Bemerkungen zur Geschichte der Logik.- Schlußbemerkungen.- A. Beweise von Eigenschaften über Zustandsabänderungen.- B. Der Beweis des Koinzidenztheorems.- C. Beweise von Eigenschaften der Substitution.- Cl. Beweis von Lemma 9.12.- C2. Charakterisierung der Komposition von Substitutionen.- C3. Der Beweis des Überführungstheorems Satz 9.16.- D. Der Satz von der universellenNormalform.- E. Semantische und syntaktische Beweisführung.- F. Beispiele für die Verwendung von Ableitungen.- F1. Beispiel für eine längere Ableitung.- F2. Das Theorem über neue Konstanten.- G. Hilfsmittel für den Vollständigkeitssatz.- G1. Der Lindenbaumsche Ergänzungssatz.- G2. Der Beweis von Satz 11.17.- H. Hilfsmittel aus der Theorie der Berechenbarkeit.- H1. Liste der verwendeten Definitionen und Sätze aus der Theorie der berechenbaren Wortfunktionen.- H2. Die Äquivalenz von Aufzählbarkeit und Semi-Entscheidbarkeit.- H3. Die Aufzählbarkeit der nicht erfüllbaren Formeln.- I. Eine "strikte"Syntax.- J. Zerlegungssatz für allgemeinste Vereinheitlicher.- Literaturangaben.- Hinweise zu weiterführender Literatur.- Verzeichnis häufig verwendeter Symbole.- Namen- und Sachverzeichnis.


andere Formate
weitere Titel der Reihe