Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Foundations of Computer Vision
Computational Geometry, Visual Image Structures and Object Shape Detection
von James F. Peters
Verlag: Springer International Publishing
Reihe: Intelligent Systems Reference Library Nr. 124
Hardcover
ISBN: 978-3-319-84912-6
Auflage: Softcover reprint of the original 1st ed. 2017
Erschienen am 19.07.2018
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 25 mm [T]
Gewicht: 680 Gramm
Umfang: 452 Seiten

Preis: 117,69 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 18. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classi¿cation of image regions. Algorithms provide a practical, step-by-step means of viewing image structures.
The implementations of CV methods in Matlab and Mathematica, classi¿cation of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of CV make the book an invaluable resource for advanced undergraduate and ¿rst year graduate students in Engineering, Computer Science or Applied Mathematics.
It offers insights into the design of CV experiments, inclusion of image processing methods in CV projects, as well as the reconstruction and interpretation of recorded natural scenes.



Basics Leading to Machine Vision.- Working with Pixels.- Visualising Pixel Intensity Distributions.- Linear Filtering.- Edges, Lines, Corners, Gaussian kernel and Voronoï Meshes.- Delaunay Mesh Segmentation.- Video Processing. An Introduction to Real-Time and O¿ine Video Analysis.- Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes.- Postscript. Where Do Shapes ¿t into the Computer Vision Landscape?.


andere Formate
weitere Titel der Reihe