Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Introduction to Deep Learning
From Logical Calculus to Artificial Intelligence
von Sandro Skansi
Verlag: Springer International Publishing
Reihe: Undergraduate Topics in Computer Science
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-319-73004-2
Auflage: 1st ed. 2018
Erschienen am 04.02.2018
Sprache: Englisch
Umfang: 191 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.



From Logic to Cognitive Science

Mathematical and Computational Prerequisites

Machine Learning Basics

Feed-forward Neural Networks

Modifications and Extensions to a Feed-forward Neural Network

Convolutional Neural Networks

Recurrent Neural Networks

Autoencoders

Neural Language Models

An Overview of Different Neural Network Architectures

Conclusion



This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.

Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.

This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.


andere Formate
weitere Titel der Reihe