Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Pancyclic and Bipancyclic Graphs
von John C. George, Abdollah Khodkar, W. D. Wallis
Verlag: Springer International Publishing
Reihe: SpringerBriefs in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-319-31951-3
Auflage: 1st ed. 2016
Erschienen am 18.05.2016
Sprache: Englisch
Umfang: 108 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Inhaltsverzeichnis
Klappentext

1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References.



This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation.

The following questions are highlighted through the book:

- What is the smallest possible number of edges in a pancyclic graph with v vertices?

- When do pancyclic graphs exist with exactly one cycle of every possible length?

- What is the smallest possible number of edges in a bipartite graph with v vertices?

- When do bipartite graphs exist with exactly one cycle of every possible length?


andere Formate
weitere Titel der Reihe