Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Guide to High Performance Distributed Computing
Case Studies with Hadoop, Scalding and Spark
von K. G. Srinivasa, Anil Kumar Muppalla
Verlag: Springer International Publishing
Reihe: Computer Communications and Networks
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-319-13497-0
Auflage: 2015
Erschienen am 09.02.2015
Sprache: Englisch
Umfang: 304 Seiten

Preis: 53,49 €

Inhaltsverzeichnis
Klappentext

Part I: Programming Fundamentals of High Performance Distributed Computing

Introduction

Getting Started with Hadoop

Getting Started with Spark

Programming Internals of Scalding and Spark

Part II: Case studies using Hadoop, Scalding and Spark

Case Study I: Data Clustering using Scalding and Spark

Case Study II: Data Classification using Scalding and Spark

Case Study III: Regression Analysis using Scalding and Spark

Case Study IV: Recommender System using Scalding and Spark



This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Features: describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing; presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution; Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding; Provides detailed case studies on approaches to clustering, data classification and regression analysis; Explains the process of creating a working recommender system using Scalding and Spark.


andere Formate
weitere Titel der Reihe