Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Introduction to Data Science
A Python Approach to Concepts, Techniques and Applications
von Laura Igual, Santi Seguí
Verlag: Springer International Publishing
Reihe: Undergraduate Topics in Computer Science
Hardcover
ISBN: 978-3-031-48955-6
Auflage: 2nd ed. 2024
Erschienen am 13.04.2024
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 15 mm [T]
Gewicht: 400 Gramm
Umfang: 260 Seiten

Preis: 48,14 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 18. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

48,14 €
merken
zum E-Book (PDF) 48,14 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Inhaltsverzeichnis
Klappentext

Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution.


The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera.



1. Introduction to Data Science.- 2. Toolboxes for Data Scientists.- 3. Descriptive statistics.- 4. Statistical Inference.- 5. Supervised Learning.- 6. Regression Analysis.- 7. Unsupervised Learning.- 8. Network Analysis.- 9. Recommender Systems.- 10. Statistical Natural Language Processing for Sentiment Analysis.- 11. Parallel Computing.



This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis.
Topics and features:
Provides numerous practical case studies using real-world data throughout the book
Supports understanding through hands-on experience of solving data science problems using Python
Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data
Provides supplementary code resources and data at an associated website
This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.


andere Formate
weitere Titel der Reihe