Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Non-equilibrium Thermodynamics
von Andrea Di Vita
Verlag: Springer Nature Switzerland
Reihe: Lecture Notes in Physics Nr. 1007
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-031-12221-7
Auflage: 1st ed. 2022
Erschienen am 13.09.2022
Sprache: Englisch
Umfang: 221 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Biografische Anmerkung
Inhaltsverzeichnis

Andrea Di Vita was trained as a plasma physicist, and has been engaged in nuclear fusion research. His work mainly concerns the stability of gas turbine burners against spontaneous, dangerous thermo-acoustic instabilities (AKA 'humming'), which transform combustion energy into mechanical energy and may destroy low-pollution, high-power burners. His primary fields of interest are non-equilibrium thermodynamics and non-linear analysis. He is a Visiting Scientist at the Università degli Studi di Genova, Dipartimento di Ingegneria civile, chimica e ambientale (DICCA).




1 Looking for the Holy Grail?

2 Thermodynamic equilibrium

2.1 Some fundamental concepts

2.2 A minimum amount of work

2.3 Thermodynamic potentials .

2.4 The impact of magnetic field

2.5 A symmetry

3 LTE

3.1 Le Châtelier's principle

3.2 What is LTE and what Le Châtelier's principle says about it

3.3 Some consequences

3.4 The role of gravity

3.4.1 Collapse

3.4.2 Constant gravitational field

3.5 Continuous vs. discontinuous systems

3.6 GEC

4 LNET 25

4.1 Discontinuous systems

4.1.1 What is LNET

4.1.2 Onsager's symmetry

4.1.3 Rayleigh's dissipation function

4.1.4 MinEP in discontinuous systems

4.1.5 The least dissipation principle

4.1.6 The balance of entropy in a copper wire

4.1.8 Seebeck effect

4.1.9 Peltier effect

4.1.10 Thomson effect

4.1.11 Kelvin's thermocouple equations

4.1.12 Knudsen vs. Pascal

4.2 Entropy balance in fluids

4.2.1 Dissipationless fluids

4.2.2 Viscous fluids

4.2.3 Joule-Thomson throttled expansion

4.2.4 Fluids with electromagnetic fields

4.2.5 Fluids with many non-reacting species

4.2.6 Fluids with many species reacting with each other

4.2.7 Fluids with gravity

4.2.8 Local form of the entropy balance

4.2.9 Global form of the entropy balance: back to the copper wire

4.3 Continuous systems

4.3.1 A slight abuse of notation

4.3.2 Thermodynamic forces and fluxes in continuous systems

4.3.3 Entropy production due to diffusion

4.3.4 Saxen's laws

4.3.5 Fick's law

4.3.6 Soret effect and Dufour effect

4.3.7 Entropy production due to reactions among species

4.3.8 Coupling of diffusion and reactions

4.3.9 GEC in fluids with diffusion and reactions

4.3.10 MinEP in continuous systems

5 Beyond LNET

5.1 Gage et al.'s theorem

5.2 Heat conduction

5.2.1 Fourier's law

5.2.2 Stability vs. Fourier's law

5.3 MinEP

5.3.1 Joule heating: Kirchhoff's principle

5.3.2 Electric arc

5.3.3 A tale of two resistors

5.3.4 Back to Ohm

5.3.5 An auxiliary relationship

5.3.6 What if Joule heating is negligible?

5.3.7 Viscosity: Korteweg-Helmholtz' principle

5.3.8 Maximum economy: yardangs, rivers and the human blood

5.3.9 Porous media

5.3.10 Stability vs. Kirchhoff's and Korteweg-Helmholtz' principles

5.3.11 Convection at moderate Ra

5.3.12 Turbulent flow between fixed parallel surfaces

5.4 Bejan's 'constructal law'

5.5 Zipf's principle of least effort

5.5.1 Of words and bells

5.5.2 City air makes you free .

5.5.3 Pareto

5.5.4 A tale of two cities

5.5.5 Travels with entropy

5.6 MEPP

5.6.1 Muffled intuitions

5.6.2 MEPP vs. MinEP

5.6.3 A thought experiment

5.6.4 Again, the copper wire

5.6.5 Two remarkable exceptions

5.6.6 Heat conduction in gases

5.6.7 Convection at large Ra

5.6.8 The H-mode

5.6.9 Shock waves

5.6.10 Dunes

5.6.11 Solids

5.6.12 Earth's oceans and atmosphere

5.7 Lotka and Odum's maximum power principle

5.8 Oscillating relaxed states

5.8.1 Rules of selection

5.8.2 Biwa et al.'s experiment

5.8.3 Meija et al.'s experiment

5.8.4 Hong et al.'s experiment

5.8.5 Holyst et al.'s simulations

5.8.6 Rauschenbach's hypothesis

5.8.7 Rayleigh's criterion of thermoacoustics

5.8.8 Rijke's tube

5.8.9 Sondhauss' tube

5.8.10 Welander's loop

5.8.11 Eddington and the Cepheids

6 A room, a heater and a window

6.1 When principles collide

6.1.1 The problem

6.1.2 Insufficient approaches

6.1.3 Excess entropy production and dissipative structures

6.1.4 Selective decay

6.1.5 Maximal entropy

6.1.6 Extended irreversible thermodynamics

6.1.7 Steepest ascent

6.1.8 Second entropy

6.1.9 Information thermodynamics and MaxEnt

6.1.10 Orthogonality principle

6.1.11 Quasi-thermodynamic approach

6.1.12 Gouy-Stodola's theorem and entropy generation

6.1.13 Much ado for nothing?

6.2 One principle to bind them all?

6.2.1 A 1st necessary condition for stability

6.2.2 Convection at moderate Ra, retrieved

6.2.3 Two applications of Bejan's constructal law

6.2.4 Kohler's principle

6.2.5 Entropy production in a radiation field

6.2.6 Uniform temperature: a reciprocal problem

6.2.7 ...Joule heating

6.2.8 ...viscous heating

6.2.9 ... and porous media

6.2.10 A 2nd necessary condition for stability

6.2.11 Entropy production of a radiating body

6.2.12 No heater, two windows

6.2.13 Resistors, again

6.2.14 A 2nd necessary condition for stability - general form

6.2.15 Heat conduction in gases, retrieved

6.2.16 Shock waves and dunes, again

6.2.17 Back to entropy generation

6.2.18 Convection, again

6.2.19 Crystal growth, retrieved

6.2.20 Liesegang and gelation

7 The garden of forking paths

8 Appendices

8.1 Proof of GEC

8.2 Euler-Lagrange equations

8.3 Lagrange multipliers

8.4 Proof of Gage et al.'s theorem


andere Formate
weitere Titel der Reihe