Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
A Beginner's Guide to Graph Theory
von W. D. Wallis
Verlag: Birkhäuser Boston
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4757-3134-7
Auflage: 2000
Erschienen am 17.04.2013
Sprache: Englisch
Umfang: 230 Seiten

Preis: 85,59 €

85,59 €
merken
Inhaltsverzeichnis
Klappentext

1 Graphs.- 2 Walks, Paths and Cycles.- 3 Cuts and Connectivity.- 4 Trees.- 5 Linear Spaces Associated with Graphs.- 6 Factorizations.- 7 Graph Colorings.- 8 Planarity.- 9 Ramsey Theory.- 10 Digraphs.- 11 Critical Paths.- 12 Flows in Networks.- 13 Computational Considerations.- References.- Hints.- Answers and Solutions.



Because of its wide applicability, graph theory is one of the fast-growing areas of modern mathematics. Graphs arise as mathematical models in areas as diverse as management science, chemistry, resource planning, and computing. Moreover, the theory of graphs provides a spectrum of methods of proof and is a good train­ ing ground for pure mathematics. Thus, many colleges and universities provide a first course in graph theory that is intended primarily for mathematics majors but accessible to other students at the senior Ievel. This text is intended for such a course. I have presented this course many times. Over the years classes have included mainly mathematics and computer science majors, but there have been several engineers and occasional psychologists as weil. Often undergraduate and graduate students are in the same dass. Many instructors will no doubt find themselves with similar mixed groups. lt is to be expected that anyone enrolling in a senior Ievel mathematics course will be comfortable with mathematical ideas and notation. In particular, I assume the reader is familiar with the basic concepts of set theory, has seen mathematical induction, and has a passing acquaintance with matrices and algebra. However, one cannot assume that the students in a first graph theory course will have a good knowledge of any specific advanced area. My reaction to this is to avoid too many specific prerequisites. The main requirement, namely a little mathematical maturity, may have been acquired in a variety of ways.