Bücher Wenner
Pierre Jarawan liest aus DIE FRAU IM MOND
03.09.2025 um 19:30 Uhr
Mathematics of Multidimensional Fourier Transform Algorithms
von Richard Tolimieri, Chao Lu, Myoung An
Verlag: Springer New York
Reihe: Signal Processing and Digital Filtering
Hardcover
ISBN: 978-1-4612-7352-3
Auflage: 2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Erschienen am 23.10.2012
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 12 mm [T]
Gewicht: 318 Gramm
Umfang: 204 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 18. April.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

1 Tensor Product.- 2 Multidimensional Tensor Product and FFT.- 3 Finite Abelian Groups.- 4 Fourier Transform of Finite Abelian Groups.- 5 Cooley-Tukey and Good-Thomas.- 6 Lines.- 7 Duality of Lines and Planes.- 8 Reduced Transform Algorithms.- 9 Field Algorithm.- 10 Implementation on RISC Architectures.- 11 Implementation on Parallel Architectures.



Fourier transforms of large multidimensional data sets arise in many fields --ranging from seismology to medical imaging. The rapidly increasing power of computer chips, the increased availability of vector and array processors, and the increasing size of the data sets to be analyzed make it both possible and necessary to analyze the data more than one dimension at a time. The increased freedom provided by multidimensional processing, however, also places intesive demands on the communication aspects of the computation, making it difficult to write code that takes all the algorithmic possiblities into account and matches these to the target architecture. This book develops algorithms for multi-dimensional Fourier transforms that yield highly efficient code on a variety of vector and parallel computers. By emphasizing the unified basis for the many approaches to one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimizing implementations. This book will be of interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing. Topics covered include: tensor products and the fast Fourier transform; finite Abelian groups and their Fourier transforms; Cooley- Tukey and Good-Thomas algorithms; lines and planes; reduced transform algorithms; field algorithms; implementation on Risc and parallel


andere Formate
weitere Titel der Reihe