Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Elementary Topics in Differential Geometry
von J. A. Thorpe
Verlag: Springer New York
Reihe: Undergraduate Texts in Mathematics
Hardcover
ISBN: 978-1-4612-6155-1
Auflage: 1979
Erschienen am 12.10.2011
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 15 mm [T]
Gewicht: 417 Gramm
Umfang: 272 Seiten

Preis: 60,98 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 23. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under­ standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.



I Graphs and Level Sets.- 2 Vector Fields.- 3 The Tangent Space.- 4 Surfaces.- 5 Vector Fields on Surfaces; Orientation.- 6 The Gauss Map.- 7 Geodesics.- 8 Parallel Transport.- 9 The Weingarten Map.- 10 Curvature of Plane Curves.- 11 Arc Length and Line Integrals.- 12 Curvature of Surfaces.- 13 Convex Surfaces.- 14 Parametrized Surfaces.- 15 Local Equivalence of Surfaces and Parametrized Surfaces.- 16 Focal Points.- 17 Surface Area and Volume.- 18 Minimal Surfaces.- 19 The Exponential Map.- 20 Surfaces with Boundary.- 21 The Gauss-Bonnet Theorem.- 22 Rigid Motions and Congruence.- 23 Isometries.- 24 Riemannian Metrics.- Notational Index.


andere Formate
weitere Titel der Reihe