Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Elements of Number Theory
von John Stillwell
Verlag: Springer New York
Reihe: Undergraduate Texts in Mathematics
Hardcover
ISBN: 978-1-4419-3066-8
Auflage: Softcover reprint of hardcover 1st ed. 2003
Erschienen am 03.12.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 15 mm [T]
Gewicht: 411 Gramm
Umfang: 268 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

* Preface * Natural numbers and integers * The Euclidean algorithm * Congruence arithmetic * The RSA cryptosystem * The Pell equation * The Gaussian Integers * Quadratic integers * The four square theorem * Quadratic reciprocity * Rings * Ideals * Prime ideals * Bibliography * Index



This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theory of ideals due to Kummer and Dedekind. Solving equations in integers is the central problem of number theory, so this book is truly a number theory book, with most of the results found in standard number theory courses. However, numbers are best understood through their algebraic structure, and the necessary algebraic concepts­ rings and ideals-have no better motivation than number theory. The first nontrivial examples of rings appear in the number theory of Euler and Gauss. The concept of ideal-today as routine in ring the­ ory as the concept of normal subgroup is in group theory-also emerged from number theory, and in quite heroic fashion. Faced with failure of unique prime factorization in the arithmetic of certain generalized "inte­ gers" , Kummer created in the 1840s a new kind of number to overcome the difficulty. He called them "ideal numbers" because he did not know exactly what they were, though he knew how they behaved.


andere Formate
weitere Titel der Reihe