Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists
von Scott M. Lynch
Verlag: Springer New York
Reihe: Statistics for Social and Behavioral Sciences
Hardcover
ISBN: 978-1-4419-2434-6
Auflage: Softcover reprint of hardcover 1st ed. 2007
Erschienen am 19.11.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 21 mm [T]
Gewicht: 587 Gramm
Umfang: 388 Seiten

Preis: 128,39 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 20. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

Probability Theory and Classical Statistics.- Basics of Bayesian Statistics.- Modern Model Estimation Part 1: Gibbs Sampling.- Modern Model Estimation Part 2: Metroplis¿Hastings Sampling.- Evaluating Markov Chain Monte Carlo Algorithms and Model Fit.- The Linear Regression Model.- Generalized Linear Models.- to Hierarchical Models.- to Multivariate Regression Models.- Conclusion.



"Introduction to Applied Bayesian Statistics and Estimation for Social Scientists" covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.
The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.


andere Formate
weitere Titel der Reihe