Bücher Wenner
Ursula Poznanski liest aus TEUFELS TANZ
09.04.2025 um 19:30 Uhr
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists
von Scott M Lynch
Verlag: Springer New York
Reihe: Statistics for Social and Beha
Gebundene Ausgabe
ISBN: 978-0-387-71264-2
Auflage: 2007 edition
Erschienen am 27.07.2007
Sprache: Englisch
Format: 238 mm [H] x 165 mm [B] x 23 mm [T]
Gewicht: 745 Gramm
Umfang: 359 Seiten

Preis: 216,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 23. März in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail.

The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods-including the Gibbs sampler and the Metropolis-Hastings algorithm-are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.

Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically.



Probability Theory and Classical Statistics.- Basics of Bayesian Statistics.- Modern Model Estimation Part 1: Gibbs Sampling.- Modern Model Estimation Part 2: Metroplis-Hastings Sampling.- Evaluating Markov Chain Monte Carlo Algorithms and Model Fit.- The Linear Regression Model.- Generalized Linear Models.- to Hierarchical Models.- to Multivariate Regression Models.- Conclusion.  


andere Formate
weitere Titel der Reihe