Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Tensor Products of C*-Algebras and Operator Spaces
The Connes-Kirchberg Problem
von Gilles Pisier
Verlag: Cambridge University Press
Reihe: London Mathematical Society St Nr. 96
Taschenbuch
ISBN: 978-1-108-74911-4
Erschienen am 02.04.2020
Sprache: Englisch
Format: 226 mm [H] x 163 mm [B] x 25 mm [T]
Gewicht: 680 Gramm
Umfang: 494 Seiten

Preis: 63,00 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 19. November in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

63,00 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

Presents an important open problem on operator algebras in a style accessible to young researchers or Ph.D. students.



Gilles Pisier is Emeritus Professor at Sorbonne Université and Distinguished Professor at Texas A & M University. He is the author of several books, including Introduction to Operator Space Theory (Cambridge, 2003) and Martingales in Banach Spaces (Cambridge, 2016). His multiple awards include the Salem prize in 1979 and the Ostrowski Prize in 1997, and he was the plenary speaker at the International Congress of Mathematicians in 1998.



Introduction; 1. Completely bounded and completely positive maps: basics; 2. Completely bounded and completely positive maps: a tool kit; 3. C*-algebras of discrete groups; 4. C*-tensor products; 5. Multiplicative domains of c.p. maps; 6. Decomposable maps; 7. Tensorizing maps and functorial properties; 8. Biduals, injective von Neumann algebras and C*-norms; 9. Nuclear pairs, WEP, LLP and QWEP; 10. Exactness and nuclearity; 11. Traces and ultraproducts; 12. The Connes embedding problem; 13. Kirchberg's conjecture; 14. Equivalence of the two main questions; 15. Equivalence with finite representability conjecture; 16. Equivalence with Tsirelson's problem; 17. Property (T) and residually finite groups. Thom's example; 18. The WEP does not imply the LLP; 19. Other proofs that C(n) < n. Quantum expanders; 20. Local embeddability into ${\mathscr{C}}$ and non-separability of $(OS_n, d_{cb})$; 21. WEP as an extension property; 22. Complex interpolation and maximal tensor product; 23. Haagerup's characterizations of the WEP; 24. Full crossed products and failure of WEP for $\mathscr{B}\otimes_{\min}\mathscr{B}$; 25. Open problems; Appendix. Miscellaneous background; References; Index.


weitere Titel der Reihe