Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Symmetries of Spacetimes and Riemannian Manifolds
von Krishan L Duggal, Ramesh Sharma
Verlag: Springer Us
Reihe: Mathematics and Its Applicatio Nr. 487
Gebundene Ausgabe
ISBN: 978-0-7923-5793-3
Auflage: 1999 edition
Erschienen am 30.06.1999
Sprache: Englisch
Format: 234 mm [H] x 156 mm [B] x 14 mm [T]
Gewicht: 503 Gramm
Umfang: 218 Seiten

Preis: 57,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 2. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.



Dedication. Preface. 1. Preliminaries. 2. Semi-Riemannian Manifolds and Hypersurfaces. 3. Lie Derivatives and Symmetry Groups. 4. Spacetimes of General Relativity. 5. Killing and Affine Killing Vector Fields. 6. Homothetic and Conformal Symmetries. 7. Connection and Curvature Symmetries. 8. Symmetry Inheritance. 9. Symmetries of Some Geometric Structures. A: The Petrov Classification. Bibliography. Index.


andere Formate
weitere Titel der Reihe