Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Elements of Causal Inference
Foundations and Learning Algorithms
von Bernhard Scholkopf, Dominik Janzing, Jonas Peters
Verlag: MIT Press Ltd
Reihe: Adaptive Computation and Machine Learning series
Reihe: Elements of Causal Inference
Gebundene Ausgabe
ISBN: 978-0-262-03731-0
Erschienen am 29.11.2017
Sprache: Englisch
Format: 236 mm [H] x 182 mm [B] x 25 mm [T]
Gewicht: 714 Gramm
Umfang: 288 Seiten

Preis: 55,00 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 12. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

55,00 €
merken
Gratis-Leseprobe
zum E-Book (EPUB) 48,49 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.

The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.
After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.

The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.



Jonas Peters is Associate Professor of Statistics at the University of Copenhagen.
Dominik Janzing is a Senior Research Scientist at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Bernhard Schölkopf is Director at the Max Planck Institute for Intelligent Systems in Tübingen, Germany. He is coauthor of Learning with Kernels (2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by the MIT Press.


andere Formate
weitere Titel der Reihe