Introduction to Human Tissues.- Mechanical Characterization Techniques.- Applications of Human Tissue Properties.- Skin.- Muscles.- Connective Tissues.- Tissues in Functional Organs.- Challenges and Future Opportunities.- Tissues in Functional Organs-High Stiffness.- Challenges and Future Opportunities.
This monograph brings forth biomechanical research methods and outcomes on human tissue experiments such as those of the brain and the heart under a single umbrella. Different mechanical characterization techniques employed in human tissue property estimation are presented in detail. The contents also focus on a hyperelastic constitutive model (e.g., Mooney-Rivlin, Ogden) for both isotropic and anisotropic tissue characterization. It also discusses energy dissipation in soft tissues and associated viscoelasticity. Human tissues, including skin, muscles, connective tissues, and tissues in all functional organs are listed and their mechanical properties are presented in detail. These tissue properties are indispensable for computational modeling of biological systems, validation of biomechanical tissue testing, medical simulation through development of artificial phantoms and surrogates, and testing of medical devices and interventions. This book will serve as a key reference forresearch in tissue engineering & biomedical engineering, medical simulation, biomechanics, finite element modeling of biological systems, biomaterials, biotechnology, implant and medical device development, and healthcare wearables.
Dr. Arnab Chanda is an Assistant Professor in the Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, India and a joint faculty at the Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS) Delhi, India. He is also the founder of a startup company BIOFIT Technologies LLC, USA.
Dr. Chanda is an expert in the fabrication and mechanical characterization of tissue mimics, and has previously developed artificial surrogates for human skin, muscles, brain, artery, and plantar fascia, and tested them at both lab and clinical settings.
Gurpreet Singh is a Ph.D. Scholar in the Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, India. He is a recipient of the most prestigious Ph.D. fellowship in India, the Prime Minister's Research Fellowship (PMRF), in the May 2021 cycle.
His research interests are soft tissue mechanics, artificial tissues, biomimetics, and computational biomechanics. He is currently developing artificial human tissues for injury and disease modeling.