Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Near-Rings and Near-Fields
Proceedings of the Conference on Near-Rings and Near-Fields Fredericton, New Brunswick, Canada, July 18-24, 1993
von Yuen Fong, Howard E. Bell, Wen-Fong Ke, Gordon Mason
Verlag: Springer Netherlands
Reihe: Mathematics and Its Applications Nr. 336
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 9789401103596
Auflage: 1995
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 278 Seiten

Preis: 53,49 €

Inhaltsverzeichnis
Klappentext

Foreword. Invited addresses. On the beginnings and development of near-ring theory; G. Betsch. Localized distributivity conditions; H.E. Heatherly. Endomorphism near-rings through the ages; J.J. Malone. Contributed papers. On regular near-ring modules; J. Ahsan. Does R prime imply MR(R2) is simple? S.W. Bagley. Essential nilpotency in near-rings; G.F. Birkenmeier. Completely prime ideals and radicals in near-rings; G. Birkenmeier, et al. Connecting seminearrings to probability generating functions; D.W. Blackett. Nilpotency and solvability in categories; S.G. Botha. Centralizer near-rings determined by End G; G.A. Cannon. On codes from residue class ring generated finite Ferrero pairs; R.A. Eggetsberger. On minimal varieties of near-rings; Y. Fong, et al. Syntactic nearrings; Y. Fong, et al. On sufficient conditions for near-rings to be isomorphic; R.L. Fray. Simplicity of some nonzero-symmetric centralizer near-rings; L. Kabza. Characterization of some finite Ferrero pairs; W.-F. Ke, H. Kiechle. On planar local nearrings and Bacon spreads; E. Kolb. Construction of finite loops of even order; A. Kreuzer. N-homomorphisms of topological N-groups; J.D. Magill Jr. The bicentralizer nearrings of R; K.D. Magill Jr., P.R. Misra. When is MA(G) a ring? C.J. Maxson. Anshei-Clay near-rings and semiaffine parallelogram spaces; H.H. Ney. On semi-endomorphal modules over Ore domains; D. Niewieczerzal. Subideals and normality of near-ring modules; G.L. Peterson. Endomorphism nearrings on finite groups, a report; G. Saad, et al. On the structure of certain 2-tame near-rings; S.D. Scott. Rings which are a homomorphic image of a centralizer near-ring; K.C. Smith. Homogeneous maps of free ring modules; A.B. van der Merwe. A decoding strategy for equal weight codes from Ferrero pairs; G.G. Wagner.



Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings.
Audience: Graduate students of mathematics and algebraists interested in near-ring theory.


andere Formate