Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Geometric Theory of Generalized Functions with Applications to General Relativity
von M. Grosser, R. Steinbauer, Michael Oberguggenberger, M. Kunzinger
Verlag: Springer Netherlands
Reihe: Mathematics and Its Applications Nr. 537
Hardcover
ISBN: 9789048158805
Auflage: 2001
Erschienen am 08.12.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 29 mm [T]
Gewicht: 785 Gramm
Umfang: 524 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in­ ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop­ ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub­ ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono­ graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro­ duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar­ ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.



Preface. Acknowledgments. Introduction. 1. Colombeau's Theory of Generalized Functions. 2. Diffeomorphism Invariant Colombeau Theory. 3. Generalized Functions on Manifolds. 4. Applications to LIE Group Analysis of Differential Equations. 5. Applications to General Relativity. Appendices.


andere Formate