Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Hybrides Deep-Learning-Modell für die Erkennung der Weizen-Gelbrost-Krankheit
Erkennung des Schweregrads von Weizengelbrost mit einem Deep-Learning-Modell
von Deepak Kumar, Vinay Kukreja
Verlag: Verlag Unser Wissen
Hardcover
ISBN: 9786204238852
Erschienen am 03.11.2021
Sprache: Deutsch
Format: 220 mm [H] x 150 mm [B] x 7 mm [T]
Gewicht: 191 Gramm
Umfang: 116 Seiten

Preis: 39,90 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 2. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

39,90 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

In vielen Regionen der Welt haben sich die Qualitäts- und Ertragsverluste bei Weizen aufgrund von Weizenrostkrankheiten erhöht. Die Identifizierung der Gelbrostkrankheit zusammen mit dem Prozentsatz der durch die Rostkrankheit geschädigten Gewebe in Bezug auf den Schweregrad ist sehr wichtig und wird in der Regel durch erfahrene Auswerter oder Computer-Vision-Techniken erreicht. Mit Hilfe von Computer-Vision-Techniken sollten die Kosten und der Zeitaufwand minimiert werden. In dieser Studie wird ein Klassifizierungsmodell für Weizengelbrost mit verschiedenen Schweregraden der Krankheit vorgestellt. Es wird mit Hilfe von STARGAN und Convolutional Neural Network (CNN) erstellt. STARGAN wird in dieser Studie zur Datenerweiterung vorgeschlagen. Nach der Durchführung mehrerer Experimente mit verschiedenen Parametern wie Epochen, Stapelgrößen, Lernrate und Dropout-Rate erreicht diese Studie eine Klassifizierungsgenauigkeit von 94,07 %, um Weizengelbrost von der normalen Weizenpflanze zu unterscheiden. Bei der Messung des Schweregrads erreichte CNN eine Validierungsgenauigkeit von 94,3 % für Weizengelbrost bei hohem Schweregrad.



Deepak Kumar é professor na Escola de Engenharia e Tecnologia (Ciências Aplicadas), Instituto Internacional de Investigação e Estudos Manav Rachna (MRIIRS), Índia.Sandhya Singh tem um doutoramento em Matemática pelo MRIIRS, Índia.Pooja Khurana é Professora Associada na Escola de Engenharia e Tecnologia (Ciências Aplicadas), MRIIRS, Índia.