Bücher Wenner
Vorlesetag - Das Schaf Rosa liebt Rosa
15.11.2024 um 15:00 Uhr
Subspace Methods for Pattern Recognition in Intelligent Environment
von Lakhmi C. Jain, Yen-Wei Chen
Verlag: Springer Berlin Heidelberg
Reihe: Studies in Computational Intelligence Nr. 552
Hardcover
ISBN: 978-3-662-50190-0
Auflage: Softcover reprint of the original 1st ed. 2014
Erschienen am 03.09.2016
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 12 mm [T]
Gewicht: 335 Gramm
Umfang: 216 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 19. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.



Active Shape Model and Its Application to Face Alignment.-Condition Relaxation in Conditional Statistical Shape Models.- Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images.-Subspace Construction from Artificially Generated Images for Traffic Sign Recognition.-Local Structure Preserving based Subspace Analysis Methods and Applications.-Sparse Representation for Image Super-Resolution.-Sampling and Recovery of Continuously-Defined Sparse Signals and Its Applications.-Tensor-Based Subspace Learning for Multi-Pose Face Synthesis.


andere Formate
weitere Titel der Reihe