Bücher Wenner
Vorlesetag - Das Schaf Rosa liebt Rosa
15.11.2024 um 15:00 Uhr
Polynomial Approximation of Differential Equations
von Daniele Funaro
Verlag: Springer Berlin Heidelberg
Reihe: Lecture Notes in Physics Monographs Nr. 8
Hardcover
ISBN: 978-3-662-13878-6
Auflage: Softcover reprint of the original 1st ed. 1992
Erschienen am 23.08.2014
Sprache: Englisch
Format: 244 mm [H] x 170 mm [B] x 18 mm [T]
Gewicht: 555 Gramm
Umfang: 320 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 20. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

106,99 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap­ plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be­ ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com­ prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.



Special Families of Polynomials.- Orthogonality.- Numerical Integration.- Transforms.- Functional Spaces.- Results in Approximation Theory.- Derivative Matrices.- Eigenvalue Analysis.- Ordinary Differential Equations.- Time-Dependent Problems.- Domain-Decomposition Methods.- Examples.- An Example in Two Dimensions.


weitere Titel der Reihe