Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Analysis II
von Wolfgang Walter
Verlag: Springer Berlin Heidelberg
Reihe: Grundwissen Mathematik Nr. 4
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-97366-6
Auflage: 2. Aufl. 1991
Erschienen am 08.03.2013
Sprache: Deutsch
Umfang: 396 Seiten

Preis: 39,99 €

39,99 €
merken
zum Hardcover 52,99 €
Inhaltsverzeichnis

§ 1. Metrische Räume. Topologische Grundbegriffe.- 1.1 Der n-dimensionale euklidische Raum ?n.- 1.2 Konvergenz.- 1.3 Die Regeln von de Morgan.- 1.4 Äquivalenzrelation.- 1.5 Metrischer Raum.- 1.6 Konvergenz und Vollständigkeit.- 1.7 Normierter Raum und Banachraum.- 1.8 Die Maximumnorm.- 1.9 Innenproduktraum und Hilbertraum.- 1.10 Der Hilbertsche Folgenraum l2.- 1.11 Innerer Punkt, Randpunkt, Häufungspunkt.- 1.12 Offene und abgeschlossene Mengen.- 1.13 Satz über Inneres, Rand und abgeschlossene Hülle.- 1.14 Charakterisierung der abgeschlossenen Hülle.- 1.15 Metrischer Teilraum.- 1.16 Kompakte Mengen.- 1.17 Abstand zwischen Mengen. Umgebungen von Mengen.- 1.18 Orthogonalität und Winkel im ?n.- 1.19 Unterräume und Ebenen im ?n.- 1.20 Gerade, Strecke, Polygonzug.- 1.21 Hyperebenen und Halbräume.- 1.22 Konvexe Mengen.- 1.23 Konvexe Funktionen.- Aufgaben.- § 2. Grenzwert und Stetigkeit.- 2.1 Grenzwert und Stetigkeit.- 2.2 Schwankung einer Funktion. Limes superior und Limes inferior.- 2.3 Stetigkeitsmodul.- 2.4 Komposition stetiger Funktionen.- 2.5 Stetige vektor- und skalarwertige Funktionen.- 2.6 Polynome in mehreren Veränderlichen.- 2.7 Stetigkeit bezüglich einzelner Veränderlichen.- 2.8 Lineare Abbildungen.- 2.9 Stetigkeit und Kompaktheit.- 2.10 Extremwerte bezüglich einzelner Variablen.- 2.11 Satz über die gleichmäßige Stetigkeit.- 2.12 Satz über die Stetigkeit der Umkehrfunktion.- 2.13 Das Halbierungsverfahren.- 2.14 Offene Überdeckungen kompakter Mengen.- 2.15 Gleichmäßige Konvergenz.- 2.16 Satz von Dini.- 2.17 Weierstraßsches Majorantenkritefium.- 2.18 Potenzreihen in mehreren Veränderlichen.- 2.19 Fortsetzung stetiger Funktionen.- 2.20 Landau-Symbole.- Aufgaben.- § 3. Differentialrechnung in mehreren Veränderlichen.- 3.1 Partielle Ableitungen. Gradient.- 3.2 Graphische Darstellung einer Funktion. Höhenlinien.- 3.3 Vertauschung der Reihenfolge der Differentiation.- 3.4 Der allgemeine Fall.- 3.5 Funktionalmatrix und Funktionaldeterminante.- 3.6 Höhere Ableitungen. Die Klassen Ck.- 3.7 Lineare Differentialoperatoren.- 3.8 Differenzierbarkeit und vollständiges Differential.- 3.9 Satz.- 3.10 Die Kettenregel.- 3.11 Der Mittelwertsatz der Differentialrechnung.- 3.12 Richtungsableitungen.- 3.13 Der Satz von Taylor.- 3.14 Das Taylorpolynom.- 3.15 Die Taylorsche Reihe.- 3.16 Fläche und Tangentialhyperebene.- 3.17 Die Hessematrix.- 3.18 Differentiation im Komplexen. Holomorphie.- 3.19 Cauchy-Riemannsche Differentialgleichungen. Satz.- 3.20 Bewegung, winkeltreue und konforme Abbildung.- Aufgaben.- § 4. Implizite Funktionen. Maxima und Minima.- 4.1 Fixpunkte kontrahierender Abbildungen.- 4.2 Einige Hilfsmittel. Lip-schitzbedingung im ?n.- 4.3 Das Newton-Verfahren.- 4.4 Implizite Funktionen.- 4.5 Satz über implizite Funktionen.- 4.6 Umkehrabbildungen. Diffeomorphismen.- 4.7 Offene Abbildungen.- 4.8 Quadratische Formen.- 4.9 Maxima und Minima.- 4.10 Das Fermatsche Kriterium für lokale Extrema.- 4.11 Hinreichende Bedingung für ein Extremum.- 4.12 Extrema mit Nebenbedingungen.- 4.13 Lagrangesche Multiplikatorenregel.- 4.14 Corollar (Lagrangesche Multiplikatorenregel).- 4.15 Lokale Klassifikation von glatten Funktionen.- 4.16 Lemma von Marston Morse.- Aufgaben.- § 5. Allgemeine Limestheorie. Wege und Kurven.- 5.1 Gerichtete Menge und Netz.- 5.2 Der Grenzwert eines Netzes.- 5.3 Konvergenzkriterium von Cauchy.- 5.4 Reellwertige Netze.- 5.5 Monotone Netze.- 5.6 Das Riemann-Integral als Netzlimes.- 5.7 Netzlimes für Teilintervalle.- 5.8 Konfinale Teilfolgen.- 5.9 Metrische Ordnung und Riemannsche Summendefinition des Integrals 149 Wege und Kurven.- 5.10 Weg und Kurve.- 5.11 Die Weglänge.- 5.12 Die Weglänge als Funktion von t.- 5.13 Äquivalente Darstellungen, Orientierung.- 5.14 Die Länge einer Kurve.- 5.15 Die Bogenlänge als Parameter.- 5.16 Tangente und Normalenebene.- 5.17 Ebene Kurven, positive Normalen.- 5.18 Krümmung und Krümmungsradius.- 5.19 Ebene Kurven.- 5.20 Funktionen von beschränkter Variation.- 5.21 Darstellungssatz von C. Jordan.- 5.22 Satz über Rektifizierbarkeit.- 5.23 Die Bewegungsgleichungen.- 5.24 Die Lösung des Zweikörperproblems.- 5.25 Satz über das Zweikörperproblem.- 5.26 Eindeutigkeitssatz.- 5.27 Historisches zu den Keplerschen Gesetzen.- Aufgaben.- § 6. Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale.- 6.1 Das Riemann-Stieltjes-Integral.- 6.2 Eigenschaften des Riemann-Stieltjes-Integrals.- 6.3 Partielle Integration. Satz.- 6.4 Transformation in ein Riemann-Integral. Satz.- 6.5 Weitere Beispiele.- 6.6 Bemerkungen.- 6.7 Mittelwertsätze für Riemann-Stieltjes-Integrale.- 6.8 Zweiter Mittelwertsatz für Riemannsche Integrale.- 6.9 Kurvenintegrale bezüglich der Bogenlänge.- 6.10 Eigenschaften von Kurvenintegralen.- 6.11 Anwendungen.- 6.12 Wegintegrale.- 6.13 Eigenschaften und Rechenregeln für Wegintegrale.- 6.14 Vektorfelder.- 6.15 Bewegung in einem Kraftfeld.- 6.16 Gradientenfelder. Stammfunktion und Potential.- 6.17 Die Integrabilitätsbedingung.- 6.18 Nochmals Kraftfelder.- 6.19 Komplexe Wegintegrale.- 6.20 Integralsatz von Cauchy.- 6.21 Satz über Stammfunktionen.- Aufgaben.- § 7. Jordanscher Inhalt und Riemannsches Integral im ?n.- 7.1 Anforderungen an den Inhaltsbegriff.- 7.2 Zerlegungen eines Intervalls.- 7.3 Intervallsummen.- 7.4 Äußerer und innerer Inhalt. Jordan-Inhalt.- 7.5 Würfelsummen.- 7.6 Quadrierbare Mengen. Satz.- 7.7 Produktmengen.- 7.8 Abbildungen von Mengen.- 7.9 Lineare Abbildungen 229 Das Riemann-Integral im ?n.- 7.10 Definition und einfache Eigenschaften des Integrals.- 7.11 Satz über gliedweise Integration.- 7.12 Jordanscher Inhalt und Riemannsches Integral.- 7.13 Die Riemannsche Summendefinition des Integrals.- 7.14 Parameterabhängige Integrale.- 7.15 Iterierte Integrale. Der Satz von Fubini.- 7.16 Das Cavalierische Prinzip.- 7.17 Die Abbildung von Gebieten. Das Lemma von Sard.- 7.18 Transformation von Integralen. Die Substitutionsregel.- 7.19 Beispiele.- 7.20 Uneigentliche Integrale.- 7.21 Beispiele.- 7.22 Die Faltung.- 7.23 Approximation durch C?-Funktionen. Mittelwerte.- 7.24 Der Weierstraßsche Approximationssatz.- 7.25 Masse und Schwerpunkt.- 7.26 Potential einer Massenbelegung.- 7.27 Rotationssymmetrische Massenbelegungen.- Aufgaben.- § 8. Die Integralsätze von Gauß, Green und Stokes.- 8.1 Gaußscher Integralsatz in der Ebene.- 8.2 Vektorprodukt und Parallelogrammfläche.- 8.3 Flächen im R3.- 8.4 Der Inhalt einer Fläche im R3.- 8.5 Oberflächenintegrale.- 8.6 Gaußscher Integralsatz im ?3.- 8.7 Physikalische Bedeutung des Gaußschen Satzes. Geschwindigkeitsfelder.- 8.8 Gramsche Matrizen und Determinanten.- 8.9 Der Inhalt von m-dimensionalen Flächen im Rn.- 8.10 Der Fall m = n-1.- 8.11 Die Rotation eines Vektorfeldes.- 8.12 Der Satz von Stokes.- Aufgaben.- §9. Das Lebesgue-Integral.- 9.1 Mathematische Vorbereitung. Das Rechnen in R.- 9.2 Intervalle.- 9.3 Mengen. Algebren und c-Algebren.- 9.4 Das äußere Lebesgue-Maß.- 9.5 Das Lebesguesche Maß.- 9.6 Offene Mengen und G?-Mengen.- 9.7 Das Lebesguesche Integral im ?n.- 9.8 Nichtnegative Funktionen.- 9.9 Meßbare Funktionen.- 9.10 Treppenfunktionen und Elementarfunktionen.- 9.11 Meßbarkeit und Integrierbarkeit.- 9.12 Funktionen mit Werten in ?p und ?.- 9.13 Satz von Beppo Levi.- 9.14 Satz von der majorisierten Konvergenz.- 9.15 Lemma von Fatou.- 9.16 Das Prinzip von Cavalieri.- 9.17 Die Produktformel.- 9.18 Satz von Fubini (1. Form).- 9.19 Die Substitutionsregel.- 9.20 Die Lp-Räume.- 9.21 Dichtesatz 340 Das Lebesgue-Integral in R.- 9.22 Absolutstetige Funktionen.- 9.23 Hauptsatz der Differential- und Integralrechnung.- 9.24 Überdeckungssatz von Vitali.- 9.25 Satz.- 9.26 Satz.- 9.27 Satz.- 9.28 Abschluß des Beweises.- 9.29 Satz.- 9.30 Partielle Integration.- 9.31 Die Substitutionsregel für n = 1.- 9.32 Ausblicke.- Aufgaben.- § 10. Fourierreihen.- 10.1 Trigonometrische Reihe und Fourierreihe.- 10.2 Satz von Riemann-Lebesgue.- 10.3 Satz.- 10.4 Konvergenzsatz.- 10.5 Konvergenzsatz für Sprungstellen.- 10.6 Gerade und ungerade Fortsetzung.- 10.7 Umrechnung auf andere Periodenlängen.- 10.8 Riemannscher Lokalisati-onssatz.- 10.9 Gleichmäßige Konvergenz. Satz.- Die Hilbertraumtheorie der Fourierreihen.- 10.10 Orthonormalfolgen im Hilbertraum.- 10.11 Fourierreihen bezüglich einer Orthonormalfolge.- 10.12 Konvergenzsatz.- 10.13 Vollständigkeit einer Orthonormalfolge.- 10.14 Der Hilbertraum L2?.- 10.15 Satz.- 10.16 Nochmals Absolutkonvergenz.- Aufgaben.- Lösungen und Lösungshinweise zu ausgewählten Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.


andere Formate