1. Aerosol Chemical Physics.- 1.1 Aerosol Microphysics.- 1.2 Chemical Physics of Microparticles.- 1.2.1 Isolated Particles and Clusters.- 1.2.2 Physical Transformations and Thermodynamics.- References.- 2. Physics of Microparticles.- 2.1 Introductory Remarks.- 2.1.1 How Small is Small?.- 2.1.2 Exemplary Size Effects.- 2.1.3 Overview and Guide to the Literature.- 2.2 Perfect Gases in Finite Boxes of Regular Shape.- 2.2.1 Weyl's Problem.- 2.2.2 Vibrational Specific Heat.- 2.2.3 Radiation Laws.- 2.2.4 Electronic Magnetic Moments.- 2.2.5 Thermodynamic Relations and Bose-Einstein Condensation.- 2.3 Optical Phonons in Dielectric Microparticles.- 2.3.1 Dispersion Scheme and Gap Modes.- 2.3.2 Summary of Theoretical Results.- 2.3.3 Far-Infrared Measurements.- 2.4 Electronic Heat Capacity and Magnetic Susceptibility of Metallic Microparticles.- 2.4.1 Historical Background.- 2.4.2 Free Energy of an "Even" Particle.- 2.4.3 Free Energy of an "Odd" Particle.- 2.4.4 Thermodynamic Properties of a Single Metallic Microparticle.- 2.4.5 Ensemble Averaging.- 2.4.6 Electronic Heat Capacity.- 2.4.7 Spin Susceptibility and NMR Shift.- 2.4.8 Spin-Orbit Coupling and Electron-Spin Resonance.- 2.5 Electromagnetic Properties of Metallic Microparticles.- 2.5.1 Electric Polarizability.- 2.5.2 Gorkov-Eliashberg Anomaly.- 2.5.3 Plasma Resonance Absorption.- 2.5.4 Far-Infrared Absorption.- 2.6 Superconducting Properties.- 2.6.1 Fluctuations of the Order Parameter.- 2.6.2 Magnetic Susceptibility.- 2.6.3 Specific Heat.- 2.6.4 Ultrasonic Attenuation.- 2.6.5 Nuclear Spin Relaxation.- 2.6.6 Transition Temperature.- References.- 3. Electronic Structure Studies of Overlayers Using Cluster and Slab Models.- 3.1 Theoretical Background.- 3.1.1 Hartree-Fock Approximation.- 3.1.2 Statistical Exchange Approximation.- 3.1.3 SCF-x?-SW Method.- 3.1.4 LCAO-x? Method.- 3.2 ETB-x? Method.- 3.2.1 Crystal Potential and Matrix Elements.- 3.2.2 ETB-Slab Model.- 3.3 Oxygen Chemisorption on Aluminum.- 3.3.1 Cluster Approach.- 3.3.2 Band Structure Approach and Experimental Results.- 3.3.3 Unresolved Issues.- Appendix 3.A.- Appendix 3.B.- Appendix 3.C.- Appendix 3.D.- References.- 4. Computer Experiments on Heterogeneous Systems.- 4.1 Methodology.- 4.1.1 Molecular Dynamics.- 4.1.2 Stochastic Molecular Dynamics.- 4.1.3 Monte Carlo Method.- 4.2 Computer Simulation of Planar Interfaces in a Lennard-Jones Fluid.- 4.2.1 Flat Interfaces.- a) Preparation of the Planar Interface.- b) Density Profile.- c) Transverse Correlations.- d) Pressure Tensor.- 4.2.2 Thermodynamics of Microclusters and Nucleation in a Finite System.- a) Preparation of Droplet in Computer Simulation.- b) Cluster Distribution.- c) The Density Profile of a Droplet.- 4.3 Computer Simulation of Idealized Interfaces.- 4.3.1 Lattice Gas Models.- 4.3.2 Nucleation in Two-Dimensional Square-Well Fluids.- 4.4 Conclusion.- References.- 5. Aerosol Growth by Condensation.- 5.1 Statement of the Problem.- 5.2 Quasistationary Fluxes to a Single Droplet in the Continuum Regime.- 5.2.1 Conservation Laws.- 5.2.2 Phenomenological Equations.- 5.2.3 Calculation of Heat and Mass Flux.- a) Heat Flux QC in the Continuum Regime.- b) Mass Flux IC in the Continuum Regime.- 5.3 Quasistationary Fluxes to a Single Droplet in the Transition Regime.- 5.3.1 Knudsen Numbers.- 5.3.2 Expressions for Mass and Heat Flux.- 5.3.3 Jumps of Density and Temperature.- 5.4 Quasistationary Droplet Growth and Evaporation.- 5.4.1 Mass Flux to a Single Droplet.- 5.4.2 Mass and Heat Balance in a Monodispersed Droplet Aerosol.- 5.4.3 Calculation of Droplet Growth and Evaporation.- 5.5 Experimental Results.- 5.5.1 Measurements of Particle Evaporation.- 5.5.2 Measurements of Particle Growth.- 5.6 Comparison of Numerical Growth Calculations with Recent Expansion Chamber Experiments.- 5.7 Conclusions and Outlook.- References.- Additional References with Titles.