Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Electron Transport in Compound Semiconductors
von B. R. Nag
Verlag: Springer Berlin Heidelberg
Reihe: Springer Series in Solid-State Sciences Nr. 11
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-81416-7
Auflage: 1980
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 464 Seiten

Preis: 96,29 €

96,29 €
merken
zum Hardcover 106,99 €
Inhaltsverzeichnis

1. Introduction.- 1.1 Historical Note.- 1.2 Applications.- 1.3 Transport Coefficients of Interest.- 1.4 Scope of the Book.- 2. Crystal Structure.- 2.1 Zinc-Blende Structure.- 2.2 Wurtzite Structure.- 2.3 Rock-Salt Structure.- 2.4 Chalcopyrite Structure.- 3. Energy Band Structure.- 3.1 Electron Wave Vector and Brillouin Zone.- 3.2 Brillouin Zone for the Sphalerite and Rock-Salt Crystal Structure.- 3.3 Brillouin Zone for the Wurtzite Structure.- 3.4 Brillouin Zone for the Chalcopyrite Structure.- 3.5 E-k Diagrams.- 3.5.1 Energy Bands for the Sphalerite Structure.- 3.5.2 Energy Bands for the Wurtzite Structure.- 3.5.3 Energy Bands for the Rock-Salt Structure.- 3.5.4 Band Structure of Mixed Compounds.- 3.6 Conclusion.- 4. Theory of Efiergy Band Structure.- 4.1 Models of Band Structure.- 4.2 Free-Electron Approximation Model.- 4.3 Tight-Binding Approximation Model.- 4.4 Energy Bands in Semiconductor Super!attices.- 4.5 The k-p Perturbation Method for Derivating E-k Relation.- 4.5.1 Single-Band Perturbation Theory.- 4.5.2 Two-Band Approximation.- 4.5.3 Effect of Spin-Orbit Interaction.- 4.5.4 Nonparabolic Relation for Extrema at Points Other than the r Point.- 4.6 External Effects on Energy Bands.- 4.6.1 Effects of Doping.- 4.6.2 Effects of Large Magnetic Fields.- 5. Electron Statistics.- 5.1 Fermi Energy for Parabolic Bands.- 5.2 Fermi Energy for Nonparabolic Bands.- 5.3 Fermi Energy in the Presence of a Quantising Magnetic Field.- 5.3.1 Density of States.- 5.3.2 Fermi Level.- 5.4 Fermi Energy and Impurity Density.- 5.4.1 General Considerations.- 5.4.2 General Formula.- 5.4.3 Discussion of Parabolic Band.- 5.4.4 Effect of Magnetic Field.- 5.5 Conclusions.- 6. Scattering Theory.- 6.1 Collision Processes.- 6.2 Transition Probability.- 6.3 Matrix Elements.- 6.4 Free-Carrier Screening.- 6.5 Overlap Integrals.- 6.6 Scattering Probability S(k).- 6.6.1 S(k) for Ionised Impurity Scattering.- 6.6.2 S(k) for Piezoelectric Scattering.- 6.6.3 S(k) for Deformation-Potential Acoustic Phonon Scattering.- 6.6.4 S(k) for Polar Optic Phonon Scattering.- 6.6.5 S(k) for Intervalley and Nonpolar Optic Phonon Scattering.- 6.7 Scattering Probabilities for Anisotropic Bands.- 6.7.1 Herring-Vogt Transformation.- 6.7.2 Scattering Integrals.- 6.8 S(k) for Neutral Impurity, Alloy, and Crystal-Defect Scattering.- 6.8.1 Neutral-Impurity Scattering.- 6.8.2 Alloy Scattering.- 6.8.3 Defect Scattering.- 6.9 Conclusions.- 7. The Boltzmann Transport Equation and Its Solution.- 7.1 The Liouville Equation and the Boltzmann Equation.- 7.2 The Boltzmann Transport Equation.- 7.3 The Collision Integral.- 7.4 Linearised Boltzmann Equation.- 7.5 Simplified Form of the Collision Terms.- 7.5.1 Collision Terms for Elastic Scattering.- 7.5.2 Collision Terms for Inelastic Scattering.- 7.6 Solution of the Boltzmann Equation.- 7.6.1 Relaxation-Time Approximation.- 7.6.2 Variational Method.- 7.6.3 Matrix Method.- 7.6.4 Iteration Method.- 7.6.5 Monte Carlo Method.- 7.7 Method of Solution for Anisotropic Coupling Constants and Anisotropic Electron Effective Mass.- 7.7.1 Solution for Elastic Collisions.- 7.7.2 Solution for Randomising Collisions.- 7.7.3 Solution for Nonrandomising Inelastic Collisions.- 7.8 Conclusions.- 8. Low-Field DC Transport Coefficients.- 8.1 Evaluation of Drift Mobility.- 8.1.1 Formulae for Relaxation-Time Approximation.- 8.1.2 Evaluation by the Variational Method.- 8.1.3 Evaluation by Matrix and Iteration Methods.- 8.1.4 Evaluation by the Monte Carlo Method.- 8.2 Drift Mobility for Anisotropic Bands.- 8.2.1 Ellipsoidal Band.- 8.2.2 Warped Band.- 8.3 Galvanomagnetic Transport Coefficients.- 8.3:1 Formulae for Hall Coefficient, Hall Mobility, and Magnetoresistance.- 8.3.2 Reduced Boltzmann Equation for the Galvanomagnetic Coefficients.- 8.3.3 Solution Using the Relaxation-Time Approximation Method.- 8.3.4 A Simple Formula for the Low-Field Hall Mobility.- 8.3.5 Numerical Methods for the Galvanomagnetic Coefficients for Arbitrary Magnetic Fields.- 8.3.6 Evaluation of the Galvanomagnetic Transport Coefficients for Anisotropic Effective Mass.- 8.4 Transport Coefficients for Nonuniform conditions.- 8.4.1 Diffusion.- 8.4.2 Thermal Transport Coefficients.- 8.4.3 Formula for Thermoelectric Power.- 8.4.4 Electronic Thermal Conductivity.- 8.5 Conclusions.- 9. Low-Field AC Transport Coefficients.- 9.1 Classical Theory of AC Transport Coefficients.- 9.1.1 Solution for the Relaxation-Time Approximation.- 9.1.2 Solution for Polar Optic Phonon and Mixed Scattering.- 9.1.3 Solution for Nonparabolic and Anisotropic Bands.- 9.2 AC Galvanomagnetic Coefficients.- 9.3 Cyclotron Resonance and Faraday Rotation.- 9.3.1 Propagation of Electromagnetic Waves in a Semiconductor in the Presence of a Magnetic Field.- 9.3.2 Cyclotron Resonance Effect.- 9.3.3 Faraday Rotation.- 9.4 Free-Carrier Absorption (FCA).- 9.4.1 Classical Theory of FCA.- 9.4.2 Quantum-Mechanical Theory of FCA.- 9.5 Concluding Remarks.- 10. Electron Transport in a Strong Magnetic Field.- 10.1 Scattering Probabilities.- 10.2 Mobility in Strong Magnetic Fields.- 10.3 Electron Mobility in the Extreme Quantum Limit (EQL).- 10.3.1 Electron Mobility for Polar Optic Phonon Scattering in the EQL.- 10.4 Oscillatory Effects in the Magnetoresistance.- 10.4.1 Shubnikov-de Haas Effect.- 10.4.2 Magnetophonon Oscillations.- 10.5 Experimental Results on Magnetophonon Resonance.- 10.6 Conclusions.- 11. Hot-Electron Transport.- 11.1 Phenomenon of Hot Electrons.- 11.2 Experimental Characteristics.- 11.3 Negative Differential Mobility and Electron Transfer Effect.- 11.4 Analytic Theories.- 11.4.1 Differential Equation Method.- 11.4.2 Maxwellian Distribution Function Method.- 11.4.3 Displaced Maxwellian Distribution Function Method.- 11.5 Numerical Methods.- 11.5.1 Iteration Method.- 11.5.2 Monte Carlo Method.- 11.6 Hot-Electron AC Conductivity.- 11.6.1 Phenomenological Theory for Single-Valley Materials.- 11.6.2 Phenomenological Theory for Two-Valley Materials.- 11.6.3 Large-Signal AC Conductivity.- 11.7 Hot-Electron Diffusion.- 11.7.1 Einstein Relation for Hot-Electron Diffusivity.- 11.7.2 Electron Diffusivity in Gallium Arsenide.- 11.7.3 Monte Carlo Calculation of the Diffusion Constant.- 11.8 Conclusion.- 12. Review of Experimental Results.- 12.1 Transport Coefficients of III-V Compounds.- 12.1.1 Indium Antimonide.- 12.1.2 Gallium Arsenide.- 12.1.3 Indium Phosphide.- 12.1.4 Indium Arsenide.- 12.1.5 Indirect-Band-Gap III-V Compounds.- 12.2 II-VI Compounds.- 12.2.1 Cubic Compounds of Zinc and Cadmium.- 12.2.2 Wurtzite Compounds of Zinc and Cadmium.- 12.2.3 Mercury Compounds.- 12.3 IV-VI Compounds.- 12.4 Mixed Compounds.- 12.5 Chalcopyrites.- 12.6 Conclusion.- 13. Conclusions.- 13.1 Problems of Current Interest.- 13.1.1 Heavily Doped Materials.- 13.1.2 Alloy Semiconductors.- 13.1.3 Transport Under Magnetically Quantised Conditions.- 13.1.4 Inversion Layers.- 13.1.5 Superlattices and Heterostructures.- 13.2 Scope of Further Studies.- Appendix A: Table of Fermi Integrals.- Appendix B: Computer Program for the Evaluation of Transport Coefficients by the Iteration Method.- Appendix C: Values of a. and b. for Gaussian Quadrature Integration. 417 Appendix D: Computer Program for the Monte Carlo Calculation of Hot-Electron Conductivity and Diffusivity.- List of Symbols.- References.


andere Formate
weitere Titel der Reihe