1. Introduction.- 1.1 General Framework of Exciton Physics.- 1.2 Basic Concepts in Exciton Theory.- 1.3 Appendix: Exciton Self-Trapping.- References.- 2. Internal Structure of Excitons.- 2.1 Overview.- 2.2 Interaction Matrices for Various Mechanisms.- 2.2.1 Electron-Hole Exchange Interaction.- 2.2.2 Cubic Crystals.- 2.2.3 Wurtzite Structure.- 2.2.4 No External Field.- 2.3 Effects of External Perturbations.- 2.3.1 Uniaxial Stress.- Cubic Crystals.- Wurtzite-Type Crystals.- 2.3.2 Electric Field.- 2.3.3 Magnetic Field.- Cubic.- Wurtzite.- 2.4 Supplementary Remarks.- 2.5 Method of Analysis.- References.- 3. Bound Excitons in Semiconductors.- 3.1 Introduction.- 3.2 The Principal No-Phonon States of the Bound Exciton.- 3.2.1 Zero Field Classification of States; the Example of Direct Gap Wurtzite CdS.- General Phenomena.- Classification of Zero Field States.- Oscillator Strength.- Magneto-Optics.- Extension to Other Systems.- 3.2.2 Theory of Exciton Binding.- Effective Mass Theory.- Corrections to Effective Mass Theory from Electron-Phonon Interaction.- Binding at Ionized Donor or Acceptor.- Binding at Neutral Donor or Acceptor.- Electron-Hole Correlation and Exchange.- Bound Exciton Excited States.- Binding at Isoelectronic Impurities.- Isoelectronic Traps in Alloy Semiconductors.- Central Cell Corrections-Haynes' Rule.- 3.2.3 The Influence of Site Symmetry on J-J Splittings.- Systems of Lower Symmetry.- Simplified Band Structure and Indirect Semiconductors.- Sublattice Dependences.- Binding at Axial Defects.- Hole-Hole Coupling.- Haynes' Rule.- Isoelectronic Donors and Acceptors.- 3.2.4 Magnetic and Uniaxial Stress Perturbations.- Theoretical Framework for Zeeman Effect.- Sources of Magnetic Anisotropy.- Effects of Degeneracy.- Combined Spin Hamiltonians.- Variation with Central-Cell Potential.- Orbital Angular Momentum Excited States.- Quadrati c Zeeman Effect.- Magnetic and Exchange Interactions.- Paschen-Back Effect.- Uniaxial Stress in Zincblende Lattice.- Multivalley Band System.- Stress-Induced Exchange Interaction.- Stress Splittings in More Complex BE.- 3.2.5 High Excitation Phenomena.- Introduction-Literature Emphasis on FE States.- Bound Excitons and the Injection Laser.- Bound Molecular Excitons at N Isoelectronic Trap in GaP.- Multiple Bound Excitons at Neutral Donors and Acceptors.- Shel1 Model for MBE.- Nitrogen Isoelectronic Trap and Stimulated Luminescence.- 3.2.6 Delocalization Phenomena at High Doping Level and at High Temperature.- Distinction Between Donor, Acceptor and Isoelectronic Trap Effects.- Excitation Tunneling Between Impurity Sites.- Thermal Quenching.- 3.3 Satellites in BE Spectra.- 3.3.1 Phonon Replicas: Introduction to Intensity Distribution.- Fröhlich Interaction.- Relationship with Deformation Potentials.- Phonon Density of States.- Poisson Intensity Distribution.- Raman Scattering and BE Luminescence.- Strong Coupling-Configurational Coordinate Diagrams.- Jahn-Tel1er Effect.- Promoting and Accepting Modes.- Momentum Conservation with Phonons.- Intervalley Scattering.- Local Modes.- Isotope Shifts in No-Phonon Lines.- Transition Metals.- Phonons Bound at Neutral Donors and Acceptors.- 3.3.2 Transitions to Excited Electronic States.- Two-Electron Satel1ites.- Influence of "Camel's Back" Conduction Band in GaP.- Two-Electron Spectra in Simpler Semiconductors.- Direct Gap Semiconductors.- Two-Hoie Satel1ites.- 3.3.3 The Auger Effect in Bound Exciton Recombination.- Basic Phenomenon.- First Evidence in BE from GaP.- Observed and Estimated Transition Rates for General BE.- Effect of Localization of Electronic Particles.- Acceptors in Si.- Comparison for Direct and Indirect Gap Semiconductors.- Auger Effect in Double Donor-Acceptor Pair Spectra.- 3.3.4 Interference Phenomena in Bound Exciton Spectra.- General Phenomenon.- Examples in N Isoelectronic Trap in GaP.- References.- 4. Surface Exciton Polaritons.- 4.1 Introduction.- 4.1.1 The Polariton Picture for Optical Surface Waves.- 4.1.2 The Influence of Spatial Dispersion.- 4.1.3 Discussion of Additional Boundary Conditions.- 4.2 Theoretical Description of Surface Exciton Polaritons.- 4.2.1 The Dispersion Relation.- 4.2.2 The Damping Mechanism of Surface Exciton Polaritons.- 4.2.3 The Electromagnetic Fields Near the Boundary.- 4.2.4 Response Function.- 4.3 Experimental Techniques and Results.- 4.3.1 Attenuated Total Reflection.- 4.3.2 Nonlinear Excitation.- 4.4 Deviations from the Ideal Surface.- 4.4.1 Surface Roughness, Waviness, and Damage Layers.- 4.4.2 Exciton-Free Surface Layers.- 4.5 Conclusions.- References.- 5. Study of Excitons and Exciton-Phonon Interactions by Resonant Raman and Brillouin Spectroscopies.- 5.1 Theory of Light Scattering in Solids.- 5.1.1 Macroscopic Theory.- 5.1.2 Microscopic Theory.- 5.2 Exciton-Phonon Interactions.- 5.2.1 Interaction Between Excitons and Nonpolar Optical Phonons.- 5.2.2 Fröhlich Interaction.- 5.2.3 Interaction Between Exciton and Nonpiezoelectric Acoustic Phonon.- 5.2.4 Piezoelectric Exciton-Acoustic Phonon Interaction.- 5.3 Experimental Techniques.- 5.4 Cu20.- 5.4.1 Dipole-Forbidden nS and nD Levels of the Yellow Excitonic Series.- 5.4.2 Phonon-Assisted lS Yellow Excitonic Absorption Edge.- 5.4.3 nP Levels of the Yellow Excitonic Series.- 5.5 Exciton-Polariton and Resonant Brillouin Scattering in GaAs.- 5.6 CdS.- 5.6.1 Resonant Brillouin Scattering.- 5.6.2 Wave Vector Dependent Resonant Raman Scattering of Longitudinal Optical (LO) Phonons.- 5.6.3 Bound Excitons and Impurity Vibrational Modes.- 5.7 CdSe.- 5.7.1 Relaxation of the B Exciton down to the A Exciton.- 5.7.2 Transformation of Resonant Raman Scattering into Luminescence.- References.- Additional References with Titles.