Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Analysis I
Integral Representations and Asymptotic Methods
von Revaz V. Gamkrelidze
Verlag: Springer Berlin Heidelberg
Reihe: Encyclopaedia of Mathematical Sciences Nr. 13
Hardcover
ISBN: 978-3-642-64786-4
Auflage: Softcover reprint of the original 1st ed. 1989
Erschienen am 18.09.2011
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 14 mm [T]
Gewicht: 388 Gramm
Umfang: 252 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

53,49 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

I. Series and Integral Representations.- II. Asymptotic Methods in Analysis.- III. Integral Transforms.- Author Index.



Infinite series, and their analogues-integral representations, became funda­mental tools in mathematical analysis, starting in the second half of the seven­teenth century. They have provided the means for introducing into analysis all o( the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series. In the development of the theory of series two basic directions can be singled out. One is the justification of operations with infmite series, the other isthe creation of techniques for using series in the solution of mathematical and applied problems. Both directions have developed in parallel Initially progress in the first direction was significantly smaller, but, in the end, progress in the second direction has always turned out to be of greater difficulty.


weitere Titel der Reihe