Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Partial Differential Equations III
The Cauchy Problem. Qualitative Theory of Partial Differential Equations
von Youri Egorov, M. A. Shubin
Übersetzung: M. Grinfeld
Verlag: Springer Berlin Heidelberg
Reihe: Encyclopaedia of Mathematical Sciences Nr. 32
Hardcover
ISBN: 978-3-642-63490-1
Auflage: Softcover reprint of the original 1st ed. 1991
Erschienen am 13.10.2012
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 12 mm [T]
Gewicht: 330 Gramm
Umfang: 212 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

53,49 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

,h In the XIX century, mathematical physics continued to be the main source of new partial differential equations and ofproblems involving them. The study ofLaplace's equation and ofthe wave equation had assumed a more systematic nature. In the beginning of the century, Fourier added the heat equation to the aforementioned two. Marvellous progress in obtaining precise solution repre­ sentation formulas is connected with Poisson, who obtained formulas for the solution of the Dirichlet problem in a disc, for the solution of the Cauchy problems for the heat equation, and for the three-dimensional wave equation. The physical setting ofthe problem led to the gradual replacement ofthe search for a general solution by the study of boundary value problems, which arose naturallyfrom the physics ofthe problem. Among these, theCauchy problem was of utmost importance. Only in the context of first order equations, the original quest for general integralsjustified itself. Here again the first steps are connected with the names of D'Alembert and Euler; the theory was being intensively 1h developed all through the XIX century, and was brought to an astounding completeness through the efforts ofHamilton, Jacobi, Frobenius, and E. Cartan. In terms of concrete equations, the studies in general rarely concerned equa­ tions of higher than second order, and at most in three variables. Classification 'h ofsecond orderequations was undertaken in the second halfofthe XIX century (by Du Bois-Raymond). An increase in the number of variables was not sanc­ tioned by applications, and led to the little understood ultra-hyperbolic case.



I. The Cauchy Problem.- II. Qualitative Theory of Second Order Linear Partial Differential Equations.- Author Index.


andere Formate
weitere Titel der Reihe