1. Introduction.- References.- 2. Metallurgy of Quasicrystals.- 2.1 Introduction.- 2.2 Preparation of Quasicrystals.- 2.2.1 Rapid Solidification.- 2.2.2 Vapor Condensation.- 2.2.3 Mechanical Alloying.- 2.2.4 Crystallization of Melt-Quenched Amorphous Ribbons.- 2.2.5 Conventional Solidification.- 2.3 Structural Classification from Diffraction Patterns.- 2.3.1 Three-Dimensional Quasicrystals.- 2.3.2 Two-Dimensional Quasicrystals.- 2.3.3 One-Dimensional Quasicrystals.- 2.4 Quasicrystalline Alloy Systems and the Formation of Quasicrystals.- 2.4.1 Metastable Quasicrystals.- 2.4.2 Stable Quasicrystals.- 2.4.3 Quasicrystals as Hume-Rothery Phases.- 2.5 Phase Transformation from Amorphous to Icosahedral Phase.- 2.6 Phase Diagrams.- 2.6.1 Al-Li-Cu.- 2.6.2 Al-Cu-Fe.- 2.6.3 Al-Pd-Mn.- 2.6.4 Zn-Mg-Y.- 2.6.5 Al-Ni-Co.- 2.7 Growth of Quasicrystals.- 2.7.1 Morphologies of Quasicrystals.- 2.7.2 Solidification of Quasicrystals.- 2.7.3 Growing Large Single Grains.- 2.8 Summary.- References.- 3. Crystallography of Quasicrystals.- 3.1 Introduction.- 3.2 N-Dimensional Description of Quasicrystals.- 3.2.1 Embedding of Direct and Reciprocal Space.- 3.2.2 Structure Factor.- 3.3 One-Dimensional Quasicrystals.- 3.3.1 Indexing.- 3.3.2 Symmetry.- 3.3.3 Example of a One-Dimensional Quasicrystal:Fibonacci Phase.- 3.4 Decagonal Quasicrystals.- 3.4.1 Indexing.- 3.4.2 Symmetry.- 3.4.3 Example of a Decagonal Phase: Layers of Penrose Tilings.- 3.5 Icosahedral Quasicrystals.- 3.5.1 Indexing.- 3.5.2 Symmetry.- 3.5.3 Example of a Three-Dimensional Quasilattice:Ammann Tiling.- References.- 4. Experimental Determination of the Structure of Quasicrystals.- 4.1 Introduction.- 4.2 X-ray and Neutron Diffraction.- 4.2.1 Patterson Analysis.- 4.2.2 Contrast Variation.- 4.3 Structure of the Al-Pd-Mn Icosahedral Phase.- 4.3.1 Space Group Determination.- 4.3.2 Patterson Analysis.- 4.3.3 First-Order Model.- 4.3.4 About the Resulting Atomic Structure.- 4.3.5 Limitations of the Direct Approach.- 4.3.6 Modeling.- 4.4 Structure of the Al-Ni-Co Decagonal Quasicrystal.- 4.5 Conclusions.- References.- 5. Electronic Transport Properties of Quasicrystals - Experimental Results.- 5.1 Introduction.- 5.1.1 Background.- 5.1.2 Resistance Anomalies.- 5.1.3 Outline.- 5.2 Experimental Results.- 5.2.1 Overview.- 5.2.2 High-Temperature Electrical Resistivity.- 5.2.3 Hall Effect and Thermoelectric Power.- 5.2.4 Icosahedral Approximants.- 5.2.5 Decagonal Quasicrystals.- 5.3 Towards Understanding Transport Properties.- 5.3.1 Strong Sensitivity to Electron Concentration.- 5.3.2 Magnitude of the Electrical Resistivity.- 5.3.3 The Magnetoresistivity.- 5.3.4 ?(T) at Low and Intermediate Temperatures.- 5.3.5 Is There a Metal-Insulator Transition in Icosahedral Al-Pd-Re?.- 5.4 Concluding Remarks.- References.- 6. Theory of Electronic Structure in Quasicrystals.- 6.1 Introduction.- 6.2 Electronic Structure in One-and Two-Dimensional Quasilattices.- 6.2.1 One-Dimensional Quasilattice: Fibonacci Lattice.- 6.2.2 Two-Dimensional Quasilattice: Penrose Lattice.- 6.3 Electronic Structure in Quasicrystals.- 6.3.1 Method of Calculations: Tight-Binding LMTO and Related Methods.- 6.3.2 Quasi-Brillouin Zone and Modification of DOS of Model Icosahedral Al.- 6.3.3 Electronic Structure in MI-Type Icosahedral Quasicrystals.- 6.3.4 Electronic Structure in TC-Type Icosahedral Quasicrystals.- 6.3.5 Electronic Structure in Decagonal Quasicrystals.- 6.3.6 General Characteristics of DOS and Wave Functions.- 6.3.7 Experimental Study of Electronic Structures.- 6.4 Transport Properties in Quasicrystals.- 6.4.1 Scenario of Transport in Random Systems.- 6.4.2 Experimental Observations.- 6.4.3 Effects of Randomness.- 6.4.4 Boltzmann Theory and Relaxation-Time Approximation.- 6.4.5 Anomalous Diffusion.- 6.4.6 Scaling Behavior.- 6.4.7 Scenario of Transport in Quasicrystals.- 6.5 Summary.- References.- 7. Elementary Excitations and Physical Properties.- 7.1 Introduction.- 7.1.1 Quasiperiodic Structure.- 7.1.2 Physical Properties.- 7.1.3 Spectral Properties of Quasiperiodic Hamiltonians.- 7.2 Quasiperiodicity, Symmetry, and Elementary Excitations.- 7.3 Modelling Quasicrystalline Structures and Approximant Phases.- 7.3.1 Icosahedral Quasicrystals.- 7.3.2 Decagonal Quasicrystals.- 7.3.3 Approximant Structures.- 7.4 Numerical Characterization of Elementary Excitations.- 7.4.1 Direct Diagonalization.- 7.4.2 Real-Space Recursion.- 7.4.3 Comparison With Experiment.- 7.5 Phonons in Quasicrystals.- 7.5.1 Interactomic Force Law and Quasiperiodicity - Modulated Quasicrystals.- 7.5.2 Phonons in Icosahedral Quasicrystals.- 7.5.3 Phonons in Decagonal Quasicrystals.- 7.5.4 Phonons - Summary.- 7.6 Electrons in Quasicrystals.- 7.6.1 s,p-Bonded Icosahedral Alloys as Hume-Rothery Phases.- 7.6.2 Icosahedral and Decagonal Aluminum-Transition Metal Alloys.- 7.6.3 Titanium-Based Quasicrystals.- 7.6.4 Fine Structure of the Electronic Spectrum, Pseudogaps, and Real Gaps.- 7.6.5 Band-Structure Effects in Electronic Transport.- 7.6.6 Magnetic Properties of Quasicrystals.- 7.6.7 Electrons - A Summary.- 7.7 Final Remarks.- References.- 8. Spectroscopic Studies of the Electronic Structure.- 8.1 Introduction.- 8.2 Theoretical Predictions.- 8.2.1 Pseudogap in the Density of States.- 8.2.2 Fine Strucure of the Density of States.- 8.3 Experimental Results.- 8.3.1 s,p-Bonded Icosahedral Alloys.- 8.3.2 Al-Cu-Transition Metal Icosahedral Alloys.- 8.3.3 Al-Pd-Mn Icosahedral Alloys.- 8.3.4 Al-Pd-Re Icosahedral Alloys.- 8.3.5 Al-Co-Cu Decagonal Alloys.- 8.3.6 Al-Ni-Co and Al-Ni-Rh Decagonal Alloys.- 8.3.7 Fine Structure of the Density of States.- 8.4 Uniqueness of the Electronic Structure of Quasicrystals.- 8.5 Quasiperiodicity and Unusual Physical Properties.- 8.6 Conclusions and Outlook.- References.- 9. Magnetic Properties of Quasicrystals.- 9.1 Introduction.- 9.2 Al-Based Quasicrystals.- 9.2.1 Paramagnetism, Effective Magnetic Moment and Saturation Magnetization.- 9.2.2 Fraction of Magnetic Mn Atoms and Giant Magnetic Moment.- 9.2.3 Difference Between Magnetic Moments in Icosahedral and Decagonal Phases.- 9.2.4 Spin-Glass Behavior.- 9.2.5 Low-Temperature Specific Heat.- 9.2.6 Model for Magnetism and Pauling Valence.- 9.2.7 Phasons, Diamagnetism, and Pauli Paramagnetism.- 9.2.8 Ferromagnetism.- 9.3 Mg-RE-Zn Quasicrystals.- 9.3.1 Susceptibility and Spin-Glass Behavior.- 9.3.2 Low-Temperature Specific Heat.- 9.3.3 Antiferromagnetism.- 9.4 Summary.- References.- 10. Surface Science of Quasicrystals.- 10.1 Introduction.- 10.1.1 Background.- 10.1.2 Outline.- 10.2 Oxidized Surfaces.- 10.2.1 Overview.- 10.2.2 Oxide Composition.- 10.2.3 Oxide Depth.- 10.2.4 Comparison to Crystalline Materials.- 10.2.5 Oxide Structure.- 10.2.6 Oxidation-Induced Phase Transformations.- 10.3 Surface Energies.- 10.4 Clean Surfaces.- 10.4.1 Methods of Clean Surface Preparation.- 10.4.2 Surface Composition.- 10.4.3 Surface Structure and Topography.- 10.4.4 Surface Chemistry.- 10.5 Friction.- 10.6 Concluding Remarks.- References.- 11. Mechanical Properties of Quasicrystals.- 11.1 Introduction.- 11.2 Low-Temperature Mechanical Properties.- 11.2.1 Mechanical Property Data.- 11.2.2 Fracture.- 11.3 Dislocations in Quasicrystals.- 11.3.1 Background.- 11.3.2 Dislocations in a Quasilattice.- 11.3.3 Dislocation Analysis.- 11.4 High-Temperature Plastic Deformation.- 11.4.1 Background.- 11.4.2 Theoretical.- 11.4.3 Results of Mechanical Testing.- 11.4.4 Microscopic Observations.- 11.5 Discussion.- 11.5.1 Model of Dislocation Friction in Quasicrystals.- 11.6 Concluding Remarks.- References.- 12. Toward Industrial Applications.- 12.1 Introduction.- 12.2 The Relevant Properties of Quasicrystals.- 12.2.1 Electronic Structure and Transport.- 12.2.2 Visible and Infrared Optical Properties.- 12.2.3 Thermopower.- 12.2.4 Lattice Dynamics.- 12.2.5 Ductility.- 12.2.6 Surface Properties.- 12.2.7 Corrosion Resistance.- 12.2.8 Hydrogen Storage.- 12.3 Possible Applications.- 12.3.1 Coatings.- 12.3.2 Dispersion Hardening of Crystalline, Quasicrystalline, and Amorphous Alloys.- 12.3.3 Selective Absorbers for Solar-Thermal Converters.- 12.3.4 Thermoelectric Devices.- 12.3.5 Hydrogen Storage and Battery Applications.- 12.4 Conclusion.- References.