Bücher Wenner
Peter Urban liest im Carolinum
04.11.2025 um 19:30 Uhr
Mechanics in Material Space
with Applications to Defect and Fracture Mechanics
von Reinhold Kienzler, George Herrmann
Verlag: Springer Berlin Heidelberg
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen


Speicherplatz: 31 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-57010-0
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 298 Seiten

Preis: 53,49 €

53,49 €
merken
zum Hardcover 53,49 €
Klappentext
Inhaltsverzeichnis

A novel and unified presentation of the elements of mechanics in material space or configurational mechanics, with applications to fracture and defect mechanics. The level is kept accessible for any engineer, scientist or graduate possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.



1 Mathematical Preliminaries.- 1.1 General Remarks.- 1.2 What is a Conservation Law?.- 1.3 Trivial Conservation Laws.- 1.4 System with a Lagrangian; Noether's Method.- 1.5 System without a Lagrangian; Neutral-Action Method.- 1.6 Discussion.- 2 Linear Theory of Elasticity.- 2.1 General Remarks.- 2.2 Elements of Linear Elasticity.- 2.3 Conservation Laws of Linear Elastostatics.- 2.4 Alternative Derivations of Conservation Laws.- 3 Properties of the Eshelby Tensor.- 3.1 General Remarks 81.- 3.2 Physical Interpretation of the Components of the Eshelby Tensor.- 3.3 Invariants, Principal Values, Principal Directions and Extremal Values of the Eshelby Tensor.- 4 Linear Elasticity with Defects.- 4.1 General Remarks.- 4.2 Path-Independent Integrals and Energy-Release Rates.- 4.3 Example: Hole-Dislocation Interaction.- 4.4 Path-Independent Integrals of Fracture Mechanics.- 5 Inhomogeneous Elastostatics.- 5.1 General Remarks.- 5.2 Symmetry Transformations.- 5.3 The Homogeneous Case.- 5.4 The Inhomogeneous Case.- 5.5 Relation to Stress-Intensity Factors.- 5.6 Examples.- 6 Elastodynamics.- 6.1 General Remarks.- 6.2 Time t as an Additional Independent Variable.- 6.3 Convolution in Time.- 6.4 Domain-Independent Integrals.- 6.5 Energy-Release Rates.- 6.6 Wave Motion.- 7 Dissipative Systems.- 7.1 General Remarks.- 7.2 Diffusion Equation.- 7.3 Non-Linear Wave Equation.- 7.4 Viscoelasticity.- 8 Coupled Fields.- 8.1 General Remarks.- 8.2 Piezoelectricity.- 8.3 Thermoelasticity.- 8.4 Mechanics of a Porous Medium.- 9 Bars, Shafts and Beams.- 9.1 General Remarks.- 9.2 Elements of Strength-of-Materials.- 9.3 Balance and Conservation Laws for Bars and Shafts.- 9.4 Balance and Conservation Laws for Beams.- 9.5 Energy-Release Rates and Stress-Intensity Factors.- 9.6 Examples.- 10 Plates andShells.- 10.1 General Remarks.- 10.2 Plate Theories.- 10.3 Conservation Laws for Elastostatics of Mindlin Plates.- 10.4 Reduction to the Classical Theory.- 10.5 Conservation Laws for Shells.- Appendix A.- Conservation Laws for Inhomogeneous Bars under Arbitrary Axial Loading.- Appendix B.- B.1 Elastodynamics of Inhomogeneous Bernoulli-Euler Beams.- B.2 Reduction to Statics.- Appendix C.- C.1 Elastodynamics of Inhomogeneous Mindlin Plates.- C.2 Reduction to Statics.- References.- Symbol Index.- Author Index.


andere Formate