Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Applications of Learning Classifier Systems
von Larry Bull
Verlag: Springer Berlin Heidelberg
Reihe: Studies in Fuzziness and Soft Computing Nr. 150
Hardcover
ISBN: 978-3-642-53559-8
Auflage: Softcover reprint of the original 1st ed. 2004
Erschienen am 03.08.2012
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 18 mm [T]
Gewicht: 482 Gramm
Umfang: 316 Seiten

Preis: 160,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 28. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw and his work prefigured such present day domains as reinforcement learning and embedded agents that are now displacing the older "standard Af' . One focus was what Holland called "classifier systems": sets of competing rule­ like "classifiers", each a hypothesis as to how best to react to some aspect of the environment--or to another rule. The system embracing such a rule "popu­ lation" would explore its available actions and responses, rewarding and rating the active rules accordingly. Then "good" classifiers would be selected and re­ produced, mutated and even crossed, a la Darwin and genetics, steadily and reliably increasing the system's ability to cope.



Learning Classifier Systems: A Brief Introduction.- Section 1 - Data Mining.- Data Mining using Learning Classifier Systems.- NXCS Experts for Financial Time Series Forecasting.- Encouraging Compact Rulesets from XCS for Enhanced Data Mining.- Section 2 - Modelling and Optimization.- The Fighter Aircraft LCS: A Real-World, Machine Innovation Application.- Traffic Balance using Learning Classifier Systems in an Agent-based Simulation.- A Multi-Agent Model of the UK Market in Electricity Generation.- Exploring Organizational-Learning Oriented Classifier Systems in Real-World Problems.- Section 3 - Control.- Distributed Routing in Communication Networks using the Temporal Fuzzy Classifier System - a Study on Evolutionary Multi-Agent Control.- The Development of an Industrial Learning Classifier System for Data-Mining in a Steel Hop Strip Mill.- Application of Learning Classifier Systems to the On-Line Reconfiguration of Electric Power Distribution Networks.- Towards Distributed Adaptive Control for Road Traffic Junction Signals using Learning Classifier Systems.- Bibliography of Real-World Classifier Systems Applications.


andere Formate
weitere Titel der Reihe