Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Computing with Words
Principal Concepts and Ideas
von Lotfi A. Zadeh
Verlag: Springer Berlin Heidelberg
Reihe: Studies in Fuzziness and Soft Computing Nr. 277
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-27473-2
Auflage: 2012
Erschienen am 11.07.2012
Sprache: Englisch
Umfang: 142 Seiten

Preis: 96,29 €

Inhaltsverzeichnis
Klappentext

From the content: What Is Computing With Words.- Essence Of CWW.- Basic Structure Of CWW.- Phases Of CWW.- Levels Of Complexity In CWW.- Imprecision Of Natural Languages And Fuzzy Logic.- Principal Rationales For Computing With Words.



In essence, Computing with Words (CWW) is a system of computation in which the objects of computation are predominantly words, phrases and propositions drawn from a natural language. CWW is based on fuzzy logic. In science there is a deep-seated tradition of according much more respect to numbers than to words. In a fundamental way, CWW is a challenge to this tradition. What is not widely recognized is that, today, words are used in place of numbers in a wide variety of applications ranging from digital cameras and household appliances to fraud detection systems, biomedical instrumentation and subway trains. 

CWW offers a unique capability-the capability to precisiate natural language. Unprecisiated (raw) natural language cannot be computed with. A key concept which underlies precisiation of meaning is that of the meaning postulate: A proposition, p, is a restriction on the values which a variable, X-a variable which is implicit in p-is allowed to take.

CWW has an important ramification for mathematics. Addition of the formalism of CWW to mathematics empowers mathematics to construct mathematical solutions of computational problems which are stated in a natural language. Traditional mathematics does not have this capability.


andere Formate
weitere Titel der Reihe