Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Intelligent Video Event Analysis and Understanding
von Jianguo Zhang, Ling Shao, Lei Zhang, Graeme A. Jones
Verlag: Springer Berlin Heidelberg
Reihe: Studies in Computational Intelligence Nr. 332
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-17554-1
Auflage: 2010
Erschienen am 02.02.2011
Sprache: Englisch
Umfang: 251 Seiten

Preis: 96,29 €

Inhaltsverzeichnis
Klappentext

The Understanding of Meaningful Events in Gesture-Based Interaction.- Apply GPCA to Motion Segmentation.- Gait Analysis and Human Motion Tracking.- Spatio-temporal Dynamic Texture Descriptors for Human Motion Recognition.- Efficient Object Localization with Variation-Normalized Gaussianized Vectors.- Fusion of Motion and Appearance for Robust People Detection in Cluttered Scenes.- Understanding Sports Video Using Players Trajectories.- Real-Time Face Recognition from Surveillance Video.- Event Understanding of Human-Object Interaction: Object Movement Detection via Stable Changes.- Survey of Dirac: A Wavelet Based Video Codec for Multiparty Video Conferencing and Broadcasting.- Erratum: Event Understanding of Human-Object Interaction: Object Movement Detection via Stable Changes.



With the vast development of Internet capacity and speed, as well as wide adop- tion of media technologies in people's daily life, a large amount of videos have been surging, and need to be efficiently processed or organized based on interest. The human visual perception system could, without difficulty, interpret and r- ognize thousands of events in videos, despite high level of video object clutters, different types of scene context, variability of motion scales, appearance changes, occlusions and object interactions. For a computer vision system, it has been be very challenging to achieve automatic video event understanding for decades. Broadly speaking, those challenges include robust detection of events under - tion clutters, event interpretation under complex scenes, multi-level semantic event inference, putting events in context and multiple cameras, event inference from object interactions, etc. In recent years, steady progress has been made towards better models for video event categorisation and recognition, e. g. , from modelling events with bag of spatial temporal features to discovering event context, from detecting events using a single camera to inferring events through a distributed camera network, and from low-level event feature extraction and description to high-level semantic event classification and recognition. Nowadays, text based video retrieval is widely used by commercial search engines. However, it is still very difficult to retrieve or categorise a specific video segment based on their content in a real multimedia system or in surveillance applications.


andere Formate
weitere Titel der Reihe