Bücher Wenner
Arno Geiger liest in der Marienkirche
12.11.2024 um 19:30 Uhr
Device Applications of Nonlinear Dynamics
von Adi Bulsara, Salvatore Baglio
Verlag: Springer Berlin Heidelberg
Reihe: Understanding Complex Systems
Hardcover
ISBN: 978-3-642-07044-0
Auflage: Softcover reprint of hardcover 1st ed. 2006
Erschienen am 20.11.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 15 mm [T]
Gewicht: 417 Gramm
Umfang: 272 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 25. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

Opening Plenary Talk.- Use of Chaos to Improve Equipments.- Nonlinear Dynamics, Materials and Sensing Devices.- Noise Induced Switching Between Oscillation States in a Nonlinear Micromechanical Oscillator.- Nonadiabaticity in Modulated Optical Traps.- Signal Processing and Control in Nonlinear Nanomechanical Systems.- Signal Modulation by Martensitic Control of Shape Memory Alloy Thin Film Actuator Architectures.- Exploiting Dynamic Cooperative Behavior in a Coupled-Core Fluxgate Magnetometer.- Motion Sensors and Actuators Based on Ionic Polymer-Metal Composites.- Pattern Formation Stability and Collapse in 2D Driven Particle Systems.- Uncertainty Sources in RTD-Fluxgate.- Modeling and Design of Ferrofluidic Sensors.- Thermocromic Materials for Temperature Sensors in New Applications.- A SQUID Ring-Resonator Finate State Machine.- Signal Processing and Applications.- Suprathreshold Stochastic Resonance Mediated by Multiplicative Noise.- Noise for Health: Phage-Based Rapid Bacterial Identification Method.- Parametric Resonance Near Hopf-Turing Instability Boundary.- Recurrent Neural Networks in Rainfall¿Runoff Modeling at Daily Scale.- Distributed Data Acquisition System for Environment Monitoring Nonlinear Processes.- Automatic Safety Control in Food Processing.- Using a TI C6701 DSP Rapid Prototyping System for Nonlinear Adaptive Filtering to Mitigate Interference.- Gunn Oscillations Described by the MEP Hydrodynamical Model of Semiconductors.- Dynamic Test Data Generation for the Nonlinear Models with Genetic Algorithms.- Neuro-Fuzzy Based Nonlinear Models.- Recon.gurable Pattern Generators Using Nonlinear Electronic Circuits.- Condfiguring A Non-Linear Process Control System Using Virtual Instrumentation.



The past two decades have witnessed an explosion of ideas in the general ?eld of nonlinear dynamics. In fact, it has become increasingly clear that areas as diverse as signal processing, lasers, molecular motors, and biomedical anomalies have a c- mon underlying thread: the dynamics that underpin these systems are inh- ently nonlinear. Yet, while there has been signi?cant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions andpreparations,thereexistcomparativelyfewdevicesthatactuallytakethis rich behavior into account. In the presence of background noise (a given, for most practical appli- tions), the underlying dynamic phenomena become even richer, with the noise actually mediating cooperative behavior that, when properly understood, can lead to signi?cant performance enhancements; a striking example of this - havior occurs, for example, when the underlying dynamics undergoes a bif- cation from static to oscillating behavior when a control parameter is swept through a critical value. If properly understood, theoretically, the (suitably quanti?ed) system response can be signi?cantly enhanced near the onset of the bifurcation. Examples of this behavior have been observed in a large n- ber of laboratory experiments on systems ranging from solid state lasers, to SQUIDs, and such behavior has been hypothesized to account for some of the more striking information processing properties of biological neurons. In many cases, background noise can precipitate this behavior, thereby playing a signi?cant role in the optimization of the response of these systems to small external perturbations.


andere Formate
weitere Titel der Reihe