Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Discourses on Algebra
von Igor R. Shafarevich
Verlag: Springer Berlin Heidelberg
Reihe: Universitext
Hardcover
ISBN: 978-3-540-42253-2
Auflage: 2003
Erschienen am 19.09.2002
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 16 mm [T]
Gewicht: 446 Gramm
Umfang: 292 Seiten

Preis: 64,19 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 5. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

64,19 €
merken
zum E-Book (PDF) 64,19 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

I wish that algebra would be the Cinderella ofour story. In the math­ ematics program in schools, geometry has often been the favorite daugh­ ter. The amount of geometric knowledge studied in schools is approx­ imately equal to the level achieved in ancient Greece and summarized by Euclid in his Elements (third century B. C. ). For a long time, geom­ etry was taught according to Euclid; simplified variants have recently appeared. In spite of all the changes introduced in geometry cours­ es, geometry retains the influence of Euclid and the inclination of the grandiose scientific revolution that occurred in Greece. More than once I have met a person who said, "I didn't choose math as my profession, but I'll never forget the beauty of the elegant edifice built in geometry with its strict deduction of more and more complicated propositions, all beginning from the very simplest, most obvious statements!" Unfortunately, I have never heard a similar assessment concerning al­ gebra. Algebra courses in schools comprise a strange mixture of useful rules, logical judgments, and exercises in using aids such as tables of log­ arithms and pocket calculators. Such a course is closer in spirit to the brand of mathematics developed in ancient Egypt and Babylon than to the line of development that appeared in ancient Greece and then con­ tinued from the Renaissance in western Europe. Nevertheless, algebra is just as fundamental, just as deep, and just as beautiful as geometry.



1. Integers (Topic: Numbers).- 1. ?2 Is Not Rational.- 2. The Irrationality of Other Square Roots.- 3. Decomposition into Prime Factors.- 2. Simplest Properties of Polynomials (Topic: Polynomials).- 4. Roots and the Divisibility of Polynomials.- 5. Multiple Roots and the Derivative.- 6. Binomial Formula.- 3. Finite Sets (Topic: Sets).- 7. Sets and Subsets.- 8. Combinatorics.- 9. Set Algebra.- 10. The Language of Probability.- 4. Prime Numbers (Topic: Numbers).- 11. The Number of Prime Numbers is Infinite.- 12. Euler's Proof That the Number of Prime Numbers is Infinite.- 13. Distribution of Prime Numbers.- 5. Real Numbers and Polynomials (Topic: Numbers and Polynomials).- 14. Axioms of the Real Numbers.- 15. Limits and Infinite Sums.- 16. Representation of Real Numbers as Decimal Fractions.- 17. Real Roots of Polynomials.- 6. Infinite Sets (Topic: Sets).- 18. Equipotence.- 19. Continuum.- 20. Thin Sets.- Supplement: Normal Numbers.- 7. Power Series (Topic: Polynomials).- 21. Polynomialsas Generating Functions.- 22. Power Series.- 23. Partitio Numerorum.- Dates of Lives of Mathematicians Mentioned in the Text.


andere Formate
weitere Titel der Reihe