Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Planning and Control of Wind Turbines in Distribution Networks
von Geev Mokryani, Pierluigi Siano
Verlag: LAP LAMBERT Academic Publishing
Hardcover
ISBN: 978-3-330-02537-0
Erschienen am 06.01.2017
Sprache: Englisch
Format: 220 mm [H] x 150 mm [B] x 11 mm [T]
Gewicht: 268 Gramm
Umfang: 168 Seiten

Preis: 64,90 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 22. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

64,90 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

In this book, deterministic and probabilistic methods are developed for optimal planning of distribution networks with integration of WTs within a market environment. With regards to the deterministic methods, hybrid optimization methods for optimal allocation of WTs from viewpoints of DG-owning DNOs and WTs¿ developers respectively for jointly minimizing annual energy losses and maximizing SW as well as maximizing NPV and SW are proposed: (i) The method jointly minimizes the annual energy losses and maximizes the SW considering different combination of wind generations and load demands to determine the optimal locations, sizes and numbers of WTs to be allocated at candidate buses. The GA is used to select the optimal locations and sizes among different sizes of WTs while the market-based OPF is used to determine the optimal number of WTs. DNO acts as the market operator of the DNO acquisition market that estimates the market clearing price and the optimization process for the active power hourly acquisition. The stochastic nature of both load and wind is modeled by hourly time series analysis. The method is also able to model the correlation among wind resources, i.e. for eac



Geev Mokryani is a Lecturer (Assistant Professor) in power systems at the School of Electrical Engineering and Computer Science, University of Bradford, UK.He was a postdoctoral research associate at Department of Electrical and Electronic Engineering, Imperial College London, U.K from 2013 to 2015.