Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Calculus and Analysis in Euclidean Space
von Jerry Shurman
Verlag: Springer International Publishing
Reihe: Undergraduate Texts in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-319-49314-5
Auflage: 1st ed. 2017
Erschienen am 26.11.2016
Sprache: Englisch
Umfang: 505 Seiten

Preis: 64,19 €

Inhaltsverzeichnis
Klappentext
Biografische Anmerkung

Preface.- 1 Results from One-Variable Calculus.- Part I Multivariable Differential Calculus.- 2 Euclidean Space.- 3 Linear Mappings and Their Matrices.- 4 The Derivative.- 5 Inverse and Implicit Functions.- Part II Multivariable Integral Calculus.- 6 Integration.- 7 Approximation by Smooth Functions.- 8 Parameterized Curves.- 9 Integration of Differential Forms.- Index.



The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject.


The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of


  • geometric intuition (the visual cortex being quickly instinctive)
  • algebraic manipulation (symbol-patterns being precise and robust)
  • incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject).

Thinking in these ways renders mathematics coherent, inevitable, and fluid.


The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.



Jerry Shurman is professor of mathematics at Reed College, Portland, OR, USA. He is also the co-author of GTM 228 "A First Course in Modular Forms."


andere Formate
weitere Titel der Reihe