Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Field Theoretic Method in Phase Transformations
von Alexander Umantsev
Verlag: Springer International Publishing
Reihe: Lecture Notes in Physics Nr. 1016
Hardcover
ISBN: 978-3-031-29604-8
Auflage: 2nd ed. 2023
Erschienen am 13.06.2023
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 29 mm [T]
Gewicht: 797 Gramm
Umfang: 532 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

106,99 €
merken
zum E-Book (PDF) 96,29 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Inhaltsverzeichnis

Alex Umantsev is a Professor of Materials Physics in the Department of Chemistry, Physics, and Materials Science at Fayetteville State University in North Carolina. He earned his doctorate in 1986 in Moscow (Russia) and worked as a research associate at Northwestern University in the early 1990s. After that he began his teaching career. His research interests are in the areas of materials theory and multiscale modeling of phase transformations in traditional small-molecule metallic or ceramic systems to crystallization of macromolecules of polymers and proteins. He has always been interested in the processing-structure-properties relations of materials ranging from their production to the analysis of their failure.



PREFACE


1.1              What Is This Book About?


1.2              Who Is This Book For?


1.3              Historical Note


1.4              Nomenclature


References


 


PART I: Classical Theories of Phase Transformations


CHAPTER 1: Thermodynamic Equilibrium of Phases


1.1  Definition of a Phase and Phase Transition


1.2  Gibbs Phase Rule


1.3  Theory of Capillarity


Problems


References


CHAPTER 2: Ehrenfest Classification of Phase Transitions


Problems


References


CHAPTER 3: Isothermal Kinetics of Phase Transformations


3.1 JMAK Theory of Nucleation and Growth


3.2 Classical Nucleation Theories


            3.2.1    Frenkel's Distribution


            3.2.2    Becker-Döring Theory


            3.2.3    Zeldovich Theory


Problems


References


CHAPTER 4: Stefan Problem


Problems


References


CHAPTER 5: Stability of States


5.3.1    Thermodynamic Stability


5.3.1    Dynamic Stability


5.3.3    Morphological Stability


Problems


References


CHAPTER 6: Dendritic Growth


Problems


References


CHAPTER 7: Coarsening of Second Phase Precipitates


Problems


References


CHAPTER 8: Magnetic Transitions


Problems


References


 


PART II: The Method


CHAPTER 1: Landau Theory of Phase Transitions


1.1 The Order Parameter: Phase Transition as a Symmetry Change


1.2 The Free Energy: Phase Transition as a Bifurcation


1.3 The Tangential Potential


1.4 Phase Diagrams and Measurable Quantities


1.4.1 First-Order Transitions


1.4.2 Second-Order Transitions


1.5 Effect of External Field on Phase Transition


Problems


References


 


CHAPTER 2:  Heterogeneous Equilibrium Systems


2.1       The Free Energy


2.1.1 Gradient Energy Contributions


2.1.2 Gradients of Temperature and Pressure


2.1.3 Gradients of Conjugate Fields


2.2       Equilibrium States


2.3       One-Dimensional Solutions of Equilibrium Equation


2.3.1 Thermo-Mechanical Analogy


2.3.2 Classification of States


2.3.3 Type-e1 States: Bifurcation off the Transition State


2.3.4 Type-e3 States: Approach to Thermodynamic Limit


2.3.5 Type-e4 State: Plane Interface


2.3.6 Interfacial Properties: Gibbs Adsorption Equation


2.3.7 Type-n4 State: Critical Plate-Instanton


2.4       Free Energy Landscape


2.5       Multidimensional Equilibrium States


2.5.1    Multidimensional Close-to-Homogeneous Equilibrium States


2.5.2    Quasi One-Dimensional Equilibrium States: Sharp Interface (Drumhead) Approximation


2.5.3    Critical Droplet-3d Spherically-Symmetric Instanton


2.6       Thermodynamic Stability of States: Local versus Global


2.6.1    Type-e4 State: Plane Interface


2.6.2    General Type-e and Type-n States


2.6.3    3d Spherically Symmetric Instanton


Problems


References


 


CHAPTER 3:  Dynamics of Homogeneous Systems


3.1       Evolution Equation: The Linear Ansatz


3.2       Solutions of the Linear-Ansatz Dynamic Equation


3.2.1    Evolution of Small Disturbances


3.2.2    More complicated types of OPs


3.2.3    Critical Slowing Down


3.2.4    Non-Linear Evolution


3.3       Beyond the Linear Ansatz


3.4       Relaxation with Memory


3.5       Other Forces


Problems


References


 


CHAPTER 4:  Evolution of Heterogeneous Systems


4.1       Time-Dependent Ginzburg-Landau Evolution Equation


4.2       Dynamic Stability of Equilibrium States


4.2.1    Homogeneous Equilibrium States


4.2.2    Heterogeneous Equilibrium States


4.3       Motion of a Plane Interface


4.3.1 Thermo-Mechanical Analogy


4.3.2 Polynomial Solution


4.3.3 Morphological Stability


4.4       Motion of Curved Interfaces: Sharp Interface (Drumhead) Approximation


4.4.1    Non-Equilibrium Interface Energy


4.4.2    Evolution of a Spherical Droplet


4.5       Dynamics of Domain Growth


Problems


References


 


CHAPTER 5:  Thermodynamic Fluctuations


5.1       Free Energy of Equilibrium System with Fluctuations


5.2       Levanyuk-Ginsburg Criterion


5.3       Dynamics of Fluctuating Systems: Langevin Force


5.4       Evolution of the Structure Factor


5.5       Drumhead Approximation of the Evolution Equation


5.5.1    Evolution of the Interfacial Structure Factor


5.5.2    Nucleation in the Drumhead Approximation


Problems


References


 


CHAPTER 6: Concluding Remarks


6.1       Parameters of the Method


6.2       Boundaries of Applicability of the Method


Problems


References


 


PART III: Applications


CHAPTER 1:  More Complicated Systems


1.1       Conservative Order Parameter: Theory of Spinodal Decomposition


1.1.1 Thermodynamic Equilibrium in Binary Systems


1.1.2    Equilibrium in Inhomogeneous Systems


1.1.3    Dynamics of Decomposition in Binary Systems


1.1.4    Evolution of Small Disturbances


1.1.5    Role of fluctuations


1.2       Complex Order Parameter: Ginzburg-Landau's Theory of Superconductivity


1.2.1    Order Parameter and Free Energy


1.2.2    Equilibrium Equations


1.2.3    Surface Tension of the Superconducting/Normal Phase Interface


1.3       Multicomponent Order Parameter: Crystallographic Phase Transitions


1.3.1    Invariance to Symmetry Group


1.3.2    Inhomogeneous Variations


1.3.3    Equilibrium States


1.4       Memory Effects: Non-Markovian Systems


1.5       "Mechanical" Order Parameter


Problems


References


 


CHAPTER 2: Multi-Physics Coupling: Thermal Effects of Phase Transformations


2.1       Equilibrium States of a Closed (Adiabatic) System


2.1.1    Type-E1 States


2.1.2    Type-E2 States


2.2       Generalized Heat Equation


2.3       Emergence of a New Phase


2.4       Motion of Interfaces: Drumhead (Sharp Interface) Approximation


2.4.1    Generalized Stefan Heat-Balance Equation


2.4.2    Generalized Kinetic Equation


2.4.3    Gibbs-Duhem Force 2.4.4    Inter-Phase Boundary Motion: Heat Trapping 2.4.5    APB Motion: Thermal Drag

2.5       Length and Energy Scales


2.6       Pattern Formation


2.6.1    One-Dimensional Transformation


2.6.2    Two-Dimensional Transformation


2.7       Thermo-Mechanical Analogy


Problems


References


 


CHAPTER 3: Extensions of the Method


3.1       Cellular Automata Method: "Poor Man's Phase Field"


3.2       Phase-Field Models of Grain Growth


3.2.1    Multiphase Field Models


3.2.1    Orientational Order-Parameter Field Models


3.3       Phase-Field Models of Dislocations and Voids


3.4       Phase-Field Crystal


Problems


References


 


EPILOGUE


Challenges and Future Prospects


 


APPENDIX A: Coarse-Graining Procedure


APPENDIX B: Calculus of Variations and Functional Derivative


APPENDIX C: Orthogonal Curvilinear Coordinates


APPENDIX D: Classical Mechanics and Lagrangian Field Theory


APPENDIX E: Eigenfunctions and Eigenvalues of The Schrödinger Equation and Sturm's Comparison Theorem


APPENDIX F: Fourier and Legendre Transforms


APPENDIX G: Stochastic Processes


The Master and Fokker-Plank Equations


Decomposition of Unstable States


Diffusion in Bistable Potential


Autocorrelation Function


The Langevin Approach


APPENDIX H: Two-phase equilibrium in a closed binary system


APPENDIX I: The Stefan Problem


APPENDIX J: "On the Theory of Adsorption of Sound in Liquids"


By L. I. Mandelshtam and M. A. Leontovich


APPENDIX K: Thermodynamically Consistent Heat Equation


 


SUBJECT INDEX


andere Formate
weitere Titel der Reihe