Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Select Ideas in Partial Differential Equations
von Peter J Costa
Verlag: Springer International Publishing
Reihe: Synthesis Lectures on Mathematics & Statistics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-031-02434-4
Auflage: 1. Auflage
Erschienen am 01.06.2022
Sprache: Englisch
Umfang: 214 Seiten

Preis: 64,19 €

64,19 €
merken
zum Hardcover 64,19 €
Inhaltsverzeichnis
Klappentext
Biografische Anmerkung

Preface.- Acknowledgments.- Introduction.- The Equations of Maxwell.- Laplace's Equation.- Fourier Series, Bessel Functions, and Mathematical Physics.- Fourier Transform, Heat Conduction, and the Wave Equation.- The Three-Dimensional Wave Equation.- An Introduction to Nonlinear Partial Differential Equations.- Raman Scattering and Numerical Methods.- The Hartman-Grobman Theorem.- Appendix: MATLAB® Commands and Functions.- References.- Index.



This text provides an introduction to the applications and implementations of partial differential equations. The content is structured in three progressive levels which are suited for upper-level undergraduates with background in multivariable calculus and elementary linear algebra (chapters 1-5), first- and second-year graduate students who have taken advanced calculus and real analysis (chapters 6-7), as well as doctoral-level students with an understanding of linear and nonlinear functional analysis (chapters 7-8) respectively. Level one gives readers a full exposure to the fundamental linear partial differential equations of physics. It details methods to understand and solve these equations leading ultimately to solutions of Maxwell's equations. Level two addresses nonlinearity and provides examples of separation of variables, linearizing change of variables, and the inverse scattering transform for select nonlinear partial differential equations. Level three presents rich sources of advanced techniques and strategies for the study of nonlinear partial differential equations, including unique and previously unpublished results. Ultimately the text aims to familiarize readers in applied mathematics, physics, and engineering with some of the myriad techniques that have been developed to model and solve linear and nonlinear partial differential equations.



Peter J. Costa, is Principal Applied Mathematician at Hologic Incorporated in Marlborough, MA. Dr. Costa is the co-creator of MATLABs Symbolic Math Toolbox. He has developed mathematical methods for the diagnosis of cervical cancer, tracking of airborne vehicles, the diffusion of nonlinear optical systems, and the transmission of infectious diseases throughout a population. His research interests include mathematical physics and mathematical biology. He received the PhD in Applied Mathematics, specializing in nonlinear partial differential equations, from the University of Massachusetts at Amherst.


andere Formate
weitere Titel der Reihe