Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Macroeconomic Forecasting in the Era of Big Data
Theory and Practice
von Peter Fuleky
Verlag: Springer International Publishing
Reihe: Advanced Studies in Theoretical and Applied Econometrics Nr. 52
Hardcover
ISBN: 978-3-030-31152-0
Auflage: 1st ed. 2020
Erschienen am 19.12.2020
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 40 mm [T]
Gewicht: 1095 Gramm
Umfang: 736 Seiten

Preis: 267,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 5. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis
Biografische Anmerkung

This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.



Introduction: Sources and Types of Big Data for Macroeconomic Forecasting.- Capturing Dynamic Relationships: Dynamic Factor Models.- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs.- Large Bayesian Vector Autoregressions.- Volatility Forecasting in a Data Rich Environment.- Neural Networks.- Seeking Parsimony: Penalized Time Series Regression.- Principal Component and Static Factor Analysis.- Subspace Methods.- Variable Selection and Feature Screening.- Dealing with Model Uncertainty: Frequentist Averaging.- Bayesian Model Averaging.- Bootstrap Aggregating and Random Forest.- Boosting.- Density Forecasting.- Forecast Evaluation.- Further Issues: Unit Roots and Cointegration.- Turning Points and Classification.- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation.- Frequency Domain.- Hierarchical Forecasting.



Peter Fuleky is an Associate Professor of Economics with a joint appointment at the University of Hawaii Economic Research Organization (UHERO), and the Department of Economics at the University of Hawaii at Manoa. His research focuses on econometrics, time series analysis, and forecasting. He is a co-author of UHERO's quarterly forecast reports on Hawaii's economy. He obtained his Ph.D. degree in Economics at the University of Washington, USA.


andere Formate
weitere Titel der Reihe