Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Network Data Analytics
A Hands-On Approach for Application Development
von K. G. Srinivasa, Srinidhi H., Siddesh G. M.
Verlag: Springer International Publishing
Reihe: Computer Communications and Networks
Hardcover
ISBN: 978-3-030-08544-5
Auflage: Softcover reprint of the original 1st ed. 2018
Erschienen am 26.12.2018
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 22 mm [T]
Gewicht: 728 Gramm
Umfang: 424 Seiten

Preis: 117,69 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 18. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis
Biografische Anmerkung

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts.

Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.



Part I: Data Analytics and Hadoop.- Chapter 1. Introduction to Data Analytics.- Chapter 2. Introduction to Hadoop.- Chapter 3. Data Analytics with Map Reduce.- Part II: Tools for Data Analytics.- Chapter 4. Apache Pig.- Chapter 5. Apache Hive.- Chapter 6. Apache Spark.- Chapter 7. Apache Flume.- Chapter 8. Apache Storm.- Chapter 9. Python R.- Part III: Machine Learning for Data Analytics.- Chapter 10. Basics of Machine Learning.- Chapter 11. Linear Regression.- Chapter 12. Logistic Regression.- Chapter 13. Machine Learning on Spark.- Part IV: Exploring and Visualizing Data.- Chapter 14. Introduction to Visualization.- Chapter 15. Principles of Data Visualization.- Chapter 16. Visualization Charts.- Chapter 17. Popular Visualization Tools.- Chapter 18. Data Visualization with Hadoop.- Part V: Case Studies.- Chapter 19. Product Recommendation.- Chapter 20. Market Basket Analysis.



Dr. Krishnarajanagar GopalaIyengar Srinivasa
is an associate professor and the head of the Department of IT at C.B.P. Government Engineering College, Jaffarpur, New Delhi, India. His other publications include the Springer book Guide to High Performance Distributed Computing.
 Dr. Gaddadevara Matt Siddesh
is an associate professor at the Department of Information Science and Engineering at Ramaiah Institute of Technology, Bangalore, India.
 Srinidhi Hiriyannaiah
is an assistant professor at the Department of Computer Science and Engineering at Ramaiah Institute of Technology, Bangalore, India.


andere Formate
weitere Titel der Reihe