Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
AI for Emerging Verticals
Human-Robot Computing, Sensing and Networking
von Muhammad Zeeshan Shakir, Naeem Ramzan
Verlag: Institution of Engineering & Technology
Reihe: Computing and Networks
Gebundene Ausgabe
ISBN: 978-1-78561-982-3
Erschienen am 29.01.2021
Sprache: Englisch
Format: 239 mm [H] x 163 mm [B] x 23 mm [T]
Gewicht: 771 Gramm
Umfang: 386 Seiten

Preis: 159,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 30. November in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

159,50 €
merken
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This edited book explores novel concepts and cutting-edge research and developments towards designing fully automated advanced digital systems. Fostered by technological advances in artificial intelligence and machine learning, such systems potentially have a wide range of applications in robotics, human computing, sensing and networking.




  • Part I: Human-robot

    • Chapter 1: Deep learning techniques for modelling human manipulation and its translation for autonomous robotic grasping with soft end-effectors

    • Chapter 2: Artificial intelligence for affective computing: an emotion recognition case study

    • Chapter 3: Machine learning-based affect detection within the context of human-horse interaction

    • Chapter 4: Robot intelligence for real-world applications

    • Chapter 5: Visual object tracking by quadrotor AR.Drone using artificial neural networks and fuzzy logic controller



  • Part II: Network

    • Chapter 6: Predictive mobility management in cellular networks

    • Chapter 7: Artificial intelligence and data analytics in 5G and beyond-5G wireless networks

    • Chapter 8: Deep Q-network-based coverage hole detection for future wireless networks

    • Chapter 9: Artificial intelligence for localization of ultrawide bandwidth (UWB) sensor nodes

    • Chapter 10: A Cascaded Machine Learning Approach for indoor classification and localization using adaptive feature selection



  • Part III: Sensing

    • Chapter 11: EEG-based biometrics: effects of template ageing

    • Chapter 12: A machine-learning-driven solution to the problem of perceptual video quality metrics

    • Chapter 13: Multitask learning for autonomous driving

    • Chapter 14: Machine-learning-enabled ECG monitoring for early detection of hyperkalaemia

    • Chapter 15: Combining deterministic compressed sensing and machine learning for data reduction in connected health

    • Chapter 16: Large-scale distributed and scalable SOM-based architecture for high-dimensional data reduction

    • Chapter 17: Surface water pollution monitoring using the Internet of Things (IoT) and machine learning

    • Chapter 18: Conclusions




weitere Titel der Reihe