¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿F=(G)Mm/RR¿¿¿¿¿¿¿¿¿G¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿"¿¿G¿"¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿
¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿
¿¿¿¿"¿¿¿¿"¿"¿¿¿"¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿0.0001¿¿¿¿¿¿¿¿¿¿¿
The author derived a new gravity formula in the article "The Derivation Of The New Formulae On Gravity" of this book. This new gravity formula has the main structure from Newton's gravity formula F=(G)Mm/RR, however there are seven factors make up the G. This article may reveal the mystery of the " Universal Gravitational Constant G", and some inherent nature of gravitation, which is the core content of this book.
Many stars have strong light radiation and neutrino radiation. Based on this, the author derived the formula for the light repulsion and the neutrino repulsion of the stars. These two repulsion formulas are very helpful for us to further understand the radiated repulsion of stars. These two articles are included in this book.
This book also analyzed the "high precision" experimental results of the Eötvös experiment, and questions the results by using the calculated data. The author believes that the Eötvös experiment is not a good method to test whether the principle of weak equivalence holds. Free fall experiment and Newton's pendulum experiment under strict vacuum conditions have proven that gravitational mass and inertial mass are not equal outside the accuracy range of 0.0001.