Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Mechanics
Lectures on Theoretical Physics
von Arnold Sommerfeld
Verlag: Elsevier Science & Techn.
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4832-2028-4
Erschienen am 11.09.2013
Sprache: Englisch
Umfang: 304 Seiten

Preis: 54,95 €

54,95 €
merken
Klappentext
Inhaltsverzeichnis

Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book invaluable.



Foreword to Sommerfelds's Course Preface to the First Edition Introduction Chapter I. Mechanics of a Particle 1. Newton's Axioms 2. Space, Time and Reference Systems 3. Rectilinear Motion of a Mass Point Examples: (1) Free Fall Near Earth's Surface (Falling Stone) (2) Free Fall From a Great Distance (Meteor) (3) Free Fall in Air (4) Harmonic Oscillations (5) Collision of Two Particles 4. Variable Masses 5. Kinematics and Statics of a Single Mass Point in a Plane and in Space (1) Plane Kinematics (2) The Concept of Moment in Plane Statics and Kinematics (3) Kinematics in Space (4) Statics in Space; Moment of Force About a Point and About an Axis 6. Dynamics (Kinetics) of the Freely Moving Mass Point; Kepler Problem; Concept of Potential Energy (1) Kepler Problem with Fixed Sun (2) Kepler Problem Including Motion of the Sun (3) When Does a Force Field Have a Potential? Chapter II. Mechanics of Systems, Principle Of Virtual Work, and d'alembert's Principle 7. Degrees of Freedom and Virtual Displacements of a Mechanical System; Holonomic and Non-holonomic Constraints 8. The Principle of Virtual Work 9. Illustrations of the Principle of Virtual Work (1) The Lever (2) Inverse of the Lever: Cyclist, Bridge (3) The Block and Tackle (4) The Drive Mechanism of a Piston Engine (5) Moment of a Force About an Axis and Work in a Virtual Rotation 10. D'Alembert's Principle; Introduction of Inertial Forces 11. Application of d'Alembert's Principle to the Simplest Problems (1) Rotation of a Rigid Body About a Fixed Axis (2) Coupling of Rotational and Translational Motion (3) Sphere Rolling on Inclined Plane (4) Mass Guided Along Prescribed Trajectory 12. Lagrange's Equations of the First Kind 13. Equations of Momentum and of Angular Momentum (1) Equation of Momentum (2) Equation of Angular Momentum (3) Proof Using the Coordinate Method (4) Examples (5) Mass Balancing of Marine Engines (6) General Rule on the Number of Integrations Feasible in a Closed System 14. The Laws of Friction (1) Static Friction (2) Sliding Friction Chapter III. Oscillation Problems 15. The Simple Pendulum 16. The Compound Pendulum Supplement: A Rule Concerning Moments of Inertia 17. The Cycloidal Pendulum 18. The Spherical Pendulum 19. Various Types of Oscillations. Free and Forced, Damp and Undamped Oscillations 20. Sympathetic Oscillations 21. The Double Pendulum Chapter IV. The Rigid Body 22. Kinematics of Rigid Bodies 23. Statics of Rigid Bodies (1) The Conditions of Equilibrium (2) Equipollence ; the Reduction of Force Systems (3) Change of Reference Point (4) Comparison of Kinematics and Statics Supplement: Wrenches and Screw Displacements 24. Linear and Angular Momentum of a Rigid Body. Their Connection with Linear and Angular Velocity 25. Dynamics of a Rigid Body. Survey of its Forms of Motion (1) The Spherical Top Under No Forces (2) The Symmetrical Top Under No Forces (3) The Unsymmetrical Top Under No Forces (4) The Heavy Symmetrical Top (5) The Heavy Unsymmetrical Top 26. Euler's Equations. Quantitative Treatment of the Top Under No Forces (1) Euler's Equations of Motion (2) Regular Precession of the Symmetrical Top Under No Forces andEuler's Theory of Polar Fluctuations (3) Motion of an Unsymmetrical Top Under No Forces. Examination of its Permanent Rotations as to Stability 27.